Martin Lepšík
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Lepšík.
Investigational New Drugs | 2012
Madhu Kollareddy; Daniella Zheleva; Petr Dzubak; Pathik S. Brahmkshatriya; Martin Lepšík; Marian Hajduch
SummaryThe Aurora kinases (serine/threonine kinases) were discovered in 1995 during studies of mutant alleles associated with abnormal spindle pole formation in Drosophila melanogaster. They soon became the focus of much attention because of their importance in human biology and association with cancer. Aurora kinases are essential for cell division and are primarily active during mitosis. Following their identification as potential targets for cancer chemotherapy, many Aurora kinase inhibitors have been discovered, and are currently under development. The binding modes of Aurora kinase inhibitors to Aurora kinases share specific hydrogen bonds between the inhibitor core and the back bone of the kinase hinge region, while others parts of the molecules may point to different parts of the active site via noncovalent interactions. Currently there are about 30 Aurora kinase inhibitors in different stages of pre-clinical and clinical development. This review summarizes the characteristics and status of Aurora kinase inhibitors in preclinical, Phase I, and Phase II clinical studies, with particular emphasis on the mechanisms of action and resistance to these promising anticancer agents. We also discuss the validity of Aurora kinases as oncology targets, on/off-target toxicities, and other important aspects of overall clinical performance and future of Aurora kinase inhibitors.
Angewandte Chemie | 2014
Jindřich Fanfrlík; Adam Přáda; Zdeňka Padělková; Adam Pecina; Jan Macháček; Martin Lepšík; Josef Holub; Aleš Růžička; Drahomír Hnyk; Pavel Hobza
The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.
Chemical Society Reviews | 2012
Pau Farràs; Emilio J. Juarez-Perez; Martin Lepšík; Rafael Luque; Rosario Núñez; Francesc Teixidor
This tutorial review will deal with the study of metallacarboranes and their interactions with other molecules from a theoretical point of view. This contribution is devoted to guide experimental chemists through calculations that some years ago were reserved to theoretical specialists. The widespread availability of fast computers enables nowadays studies of complex compounds (e.g. metallacarboranes) from different perspectives including simulation of NMR, infrared or Raman spectra and calculation of other properties such as atomic charges or inter-/intramolecular interactions. The insights gained on the basis of theoretical calculations are crucial for either finding novel or improving existing applications of metallacarboranes. For example, in the case of enzyme inhibitors, the interactions of the metallacarboranes with the surrounding protein and how the interaction affects the efficiency are difficult problems to study experimentally. The use of theoretical tools can provide a detailed understanding of the physico-chemical basis of the interactions and thus offers a chance to control the overall process.
ACS Chemical Biology | 2013
Jindřich Fanfrlík; Michal Kolář; Martin Kamlar; David Hurný; Francesc X. Ruiz; Alexandra Cousido-Siah; Andre Mitschler; Jan Řezáč; Elango Munusamy; Martin Lepšík; Pavel Matějíček; Jan Veselý; Alberto Podjarny; Pavel Hobza
In this paper, we studied a designed series of aldose reductase (AR) inhibitors. The series was derived from a known AR binder, which had previously been shown to form a halogen bond between its bromine atom and the oxygen atom of the Thr-113 side chain of AR. In the series, the strength of the halogen bond was modulated by two factors, namely bromine-iodine substitution and the fluorination of the aromatic ring in several positions. The role of the single halogen bond in AR-ligand binding was elucidated by advanced binding free energy calculations involving the semiempirical quantum chemical Hamiltonian. The results were complemented with ultrahigh-resolution X-ray crystallography and IC50 measurements. All of the AR inhibitors studied were shown by X-ray crystallography to bind in an identical manner. Further, it was demonstrated that it was possible to decrease the IC50 value by about 1 order of magnitude by tuning the strength of the halogen bond by a monoatomic substitution. The calculations revealed that the protein-ligand interaction energy increased upon the substitution of iodine for bromine or upon the addition of electron-withdrawing fluorine atoms to the ring. However, the effect on the binding affinity was found to be more complex due to the change of the solvation/desolvation properties within the ligand series. The study shows that it is possible to modulate the strength of a halogen bond in a protein-ligand complex as was designed based on the previous studies of low-molecular-weight complexes.
Proteins | 2004
Martin Lepšík; Zdeněk Kříž; Zdeněk Havlas
A subnanomolar inhibitor of human immunodeficiency virus type 1 (HIV‐1) protease, designated QF34, potently inhibits the wild‐type and drug‐resistant enzyme. To explain its broad activity, the binding of QF34 to the wild‐type HIV‐1 protease is investigated by molecular dynamics simulations and compared to the binding of two inhibitors that are used clinically, saquinavir (SQV) and indinavir (IDV). Analysis of the flexibility of protease residues and inhibitor segments in the complex reveals that segments of QF34 were more mobile during the dynamics studies than the segments of SQV and IDV. The dynamics of hydrogen bonding show that QF34 forms a larger number of stable hydrogen bonds than the two inhibitors that are used clinically. Absolute binding free energies were calculated with molecular mechanics–generalized Born surface area (MM–GBSA) methodology using three protocols. The most consistent results were obtained using the single‐trajectory approach, due to cancellation of errors and inadequate sampling in the separate‐trajectory protocols. For all three inhibitors, energy components in favor of binding include van der Waals and electrostatic terms, whereas polar solvation and entropy terms oppose binding. Decomposition of binding energies reveals that more protease residues contribute significantly to the binding of QF34 than to the binding of SQV and IDV. Moreover, contributions from protease main chains and side chains are balanced in the case of QF34 (52:48 ratio, respectively), whereas side chain contributions prevail in both SQV and IDV (main‐chain:side‐chain ratios of 41:59 and 45:55, respectively). The presented results help explain the ability of QF34 to inhibit multiple resistant mutants and should be considered in the design of broad‐specificity second‐generation HIV‐1 protease inhibitors. Proteins 2004.
Journal of Physical Chemistry B | 2013
Michal Kolář; Jindřich Fanfrlík; Martin Lepšík; Flavio Forti; F. Javier Luque; Pavel Hobza
The accuracy and performance of implicit solvent methods for solvation free energy calculations were assessed on a set of 20 neutral drug molecules. Molecular dynamics (MD) provided ensembles of conformations in water and water-saturated octanol. The solvation free energies were calculated by popular implicit solvent models based on quantum mechanical (QM) electronic densities (COSMO-RS, MST, SMD) as well as on molecular mechanical (MM) point-charge models (GB, PB). The performance of the implicit models was tested by a comparison with experimental water-octanol transfer free energies (ΔG(ow)) by using single- and multiconformation approaches. MD simulations revealed difficulties in a priori estimation of the flexibility features of the solutes from simple structural descriptors, such as the number of rotatable bonds. An increasing accuracy of the calculated ΔG(ow) was observed in the following order: GB1 ~ PB < GB7 ≪ MST < SMD ~ COSMO-RS with a clear distinction identified between MM- and QM-based models, although for the set excluding three largest molecules, the differences among COSMO-RS, MST, and SMD were negligible. It was shown that the single-conformation approach applied to crystal geometries provides a rather accurate estimate of ΔG(ow) for rigid molecules yet fails completely for the flexible ones. The multiconformation approaches improved the performance, but only when the deformation contribution was ignored. It was revealed that for large-scale calculations on small molecules a recent GB model, GB7, provided a reasonable accuracy/speed ratio. In conclusion, the study contributes to the understanding of solvation free energy calculations for physical and medicinal chemistry applications.
The EMBO Journal | 2014
Sebastian Zoll; Stancho Stanchev; Jakub Began; Jan Škerle; Martin Lepšík; Lucie Peclinovská; Pavel Majer; Kvido Strisovsky
The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl‐chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl‐CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate‐like manner, and their co‐crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the ‘water retention site’, suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid‐like protein superfamily may have similar substrate or client‐protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG.
Journal of Physical Chemistry B | 2008
Jindrich Fanfrlik; Jiri Brynda; Jan Rezac; Pavel Hobza; Martin Lepšík
Deltahedral metallacarborane compounds have recently been discovered as potent, specific, stable, and nontoxic inhibitors of HIV-1 protease (PR), the major target for AIDS therapy. The 2.15 A-resolution X-ray structure has exhibited a nonsymmetrical binding of the parental compound [Co(3+)-(C2B9H11)2](-) (GB-18) into PR dimer and a symmetrical arrangement in the crystal of two PR dimer complexes into a tetramer. In order to explore structural and energetic details of the inhibitor binding, quantum mechanics coupled with molecular mechanics approach was utilized. Realizing the close positioning of anionic inhibitors in the active site cavity, the possibility of an exchange of structural water molecules Wat50 and Wat128 by Na+ counterions was studied. The energy profiles for the rotation of the GB-18 molecules along their longitudinal axes in complex with PR were calculated. The results show that two Na+ counterions are present in the active site cavity and provide energetically favorable and unfavorable positions for carbon atoms within the carborane cages. Eighty-one rotamer combinations of four molecules of GB-18 bound to PR out of 4 x 10(5) are predicted to be highly populated. These results lay ground for further calculations of interaction energies between GB-18 and amino acids of PR active site and will make it possible to interpret computationally the binding of similar metallacarborane molecules to PR as well as to resistant PR variants. Moreover, this computational tool will allow the design of new, more potent metallacarborane-based HIV-1 protease inhibitors.
Journal of Biological Chemistry | 2011
Adéla Jílková; P Rezacova; Martin Lepšík; Martin Horn; J Vachova; J Fanfrlik; Jiří Brynda; James H. McKerrow; Conor R. Caffrey; Michael Mareš
Schistosomiasis caused by a parasitic blood fluke of the genus Schistosoma afflicts over 200 million people worldwide. Schistosoma mansoni cathepsin B1 (SmCB1) is a gut-associated peptidase that digests host blood proteins as a source of nutrients. It is under investigation as a drug target. To further this goal, we report three crystal structures of SmCB1 complexed with peptidomimetic inhibitors as follows: the epoxide CA074 at 1.3 Å resolution and the vinyl sulfones K11017 and K11777 at 1.8 and 2.5 Å resolutions, respectively. Interactions of the inhibitors with the subsites of the active-site cleft were evaluated by quantum chemical calculations. These data and inhibition profiling with a panel of vinyl sulfone derivatives identify key binding interactions and provide insight into the specificity of SmCB1 inhibition. Furthermore, hydrolysis profiling of SmCB1 using synthetic peptides and the natural substrate hemoglobin revealed that carboxydipeptidase activity predominates over endopeptidolysis, thereby demonstrating the contribution of the occluding loop that restricts access to the active-site cleft. Critically, the severity of phenotypes induced in the parasite by vinyl sulfone inhibitors correlated with enzyme inhibition, providing support that SmCB1 is a valuable drug target. The present structure and inhibitor interaction data provide a footing for the rational design of anti-schistosomal inhibitors.
Journal of Molecular Biology | 2002
Jan Weber; Jeroen R. Mesters; Martin Lepšík; Jana Prejdová; Martin Švec; Jana Sponarova; Petra Mlčochová; Kristina Skalická; Kvido Stříšovský; Táňa Uhlı́ková; Milan Souček; Ladislav Machala; Marie Staňková; Jiří Vondrášek; Thomas Klimkait; Hans-Georg Kraeusslich; Rolf Hilgenfeld; Jan Konvalinka
Protease inhibitors (PIs) are an important class of drugs for the treatment of HIV infection. However, in the course of treatment, resistant viral variants with reduced sensitivity to PIs often emerge and become a major obstacle to successful control of viral load. On the basis of a compound equipotently inhibiting HIV-1 and 2 proteases (PR), we have designed a pseudopeptide inhibitor, QF34, that efficiently inhibits a wide variety of PR variants. In order to analyze the potency of the inhibitor, we constructed PR species harboring the typical (signature) mutations that confer resistance to commercially available PIs. Kinetic analyses showed that these mutated PRs were inhibited up to 1,000-fold less efficiently by the clinically approved PIs. In contrast, all PR species were effectively inhibited by QF34. In a clinical study, we have monitored 30 HIV-positive patients in the Czech Republic undergoing highly active antiretroviral therapy, and have identified highly PI resistant variants. Kinetic analyses revealed that QF34 retained its subnanomolar potency against multi-drug resistant PR variants. X-ray crystallographic analysis and molecular modeling experiments explained the wide specificity of QF34: this inhibitor binds to the PR in an unusual manner, thus avoiding contact sites that are mutated upon resistance development, and the unusual binding mode and consequently the binding energy is therefore preserved in the complex with a resistant variant. These results suggest a promising route for the design of second-generation PIs that are active against a variety of resistant PR variants.