Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin M. Roth is active.

Publication


Featured researches published by Martin M. Roth.


The Astrophysical Journal | 2011

The HETDEX pilot survey - II. The evolution of the Lyα escape fraction from the ultraviolet slope and luminosity function of 1.9 < z < 3.8 LAEs

Guillermo A. Blanc; Joshua J. Adams; Karl Gebhardt; Gary J. Hill; Niv Drory; Lei Hao; Ralf Bender; Robin Ciardullo; Steven L. Finkelstein; Alexander B. Fry; Eric Gawiser; Caryl Gronwall; Ulrich Hopp; Donghui Jeong; Ralf Kelzenberg; Eiichiro Komatsu; Phillip J. MacQueen; Jeremy D. Murphy; Martin M. Roth; Donald P. Schneider; Joseph R. Tufts

We study the escape of Lyα photons from Lyα emitting galaxies (LAEs) and the overall galaxy population using a sample of 99 LAEs at 1.9 (3-6) × 1042 erg s–1 (0.25-0.5 L*), have a mean E(B – V) = 0.13 ± 0.01, implying an attenuation of ~70% in the UV. They show a median UV uncorrected SFR = 11 M ☉ yr–1, dust-corrected SFR = 34 M ☉ yr–1, and Lyα equivalent widths (EWs) which are consistent with normal stellar populations. We measure a median Lyα escape fraction of 29%, with a large scatter and values ranging from a few percent to 100%. The Lyα escape fraction in LAEs correlates with E(B – V) in a way that is expected if Lyα photons suffer from similar amounts of dust extinction as UV continuum photons. This result implies that a strong enhancement of the Lyα EW with dust, due to a clumpy multi-phase interstellar medium (ISM), is not a common process in LAEs at these redshifts. It also suggests that while in other galaxies Lyα can be preferentially quenched by dust due to its scattering nature, this is not the case in LAEs. We find no evolution in the average dust content and Lyα escape fraction of LAEs from z ~ 4 to 2. We see hints of a drop in the number density of LAEs from z ~ 4 to 2 in the redshift distribution and the Lyα luminosity function, although larger samples are required to confirm this. The mean Lyα escape fraction of the overall galaxy population decreases significantly from z ~ 6 to z ~ 2, in agreement with recent results. Our results point toward a scenario in which star-forming galaxies build up significant amounts of dust in their ISM between z ~ 6 and 2, reducing their Lyα escape fraction, with LAE selection preferentially detecting galaxies which have the highest escape fractions given their dust content. The fact that a large escape of Lyα photons is reached by z ~ 6 implies that better constraints on this quantity at higher redshifts might detect re-ionization in a way that is uncoupled from the effects of dust.


Proceedings of SPIE | 2010

The MUSE second-generation VLT instrument

Roland Bacon; Matteo Accardo; L. Adjali; Heiko Anwand; Svend-Marian Bauer; I. Biswas; J. Blaizot; D. Boudon; Sylvie Brau-Nogue; Jarle Brinchmann; P. Caillier; L. Capoani; C. M. Carollo; T. Contini; P. Couderc; E. Daguisé; Sebastian Deiries; B. Delabre; S. Dreizler; Jean-Pierre Dubois; M. Dupieux; Christophe Dupuy; Eric Emsellem; T. Fechner; A. Fleischmann; Marc François; G. Gallou; T. Gharsa; Andreas Glindemann; Domingo Gojak

Summary: The Multi Unit Spectroscopic Explorer (MUSE) is a second-generation VLT panoramic integral-field spectrograph currently in manufacturing, assembly and integration phase. MUSE has a field of 1x1 arcmin2 sampled at 0.2x0.2 arcsec2 and is assisted by the VLT ground layer adaptive optics ESO facility using four laser guide stars. The instrument is a large assembly of 24 identical high performance integral field units, each one composed of an advanced image slicer, a spectrograph and a 4kx4k detector. In this paper we review the progress of the manufacturing and report the performance achieved with the first integral field unit.


Astronomy and Astrophysics | 2013

Mass-metallicity relation explored with CALIFA - I. Is there a dependence on the star-formation rate?

S. F. Sánchez; F. F. Rosales-Ortega; Bruno Jungwiert; J. Iglesias-Páramo; J. M. Vílchez; R. A. Marino; C. J. Walcher; B. Husemann; D. Mast; A. Monreal-Ibero; R. Cid Fernandes; Emmanuelle Perez; R. M. González Delgado; R. García-Benito; L. Galbany; G. van de Ven; Knud Jahnke; H. Flores; Joss Bland-Hawthorn; A. R. Lopez-Sanchez; V. Stanishev; Daniel Miralles-Caballero; Angeles I. Díaz; P. Sánchez-Blázquez; M. Mollá; Anna Gallazzi; P. Papaderos; J. M. Gomes; N. Gruel; Isabel Pérez

We studied the global and local ℳ-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2−3 effective radii), with a resolution high enough to separate individual H II regions and/or aggregations. About 3000 individual H II regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise ratio to derive the oxygen abundance and star-formation rate associated with each region. In addition, we computed the integrated and spatially resolved stellar masses (and surface densities) based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion lower than the one already reported in the literature (σ_Δlog (O/H) = 0.07 dex). Indeed, this dispersion is only slightly higher than the typical error derived for our oxygen abundances. However, we found no secondary relation with the star-formation rate other than the one induced by the primary relation of this quantity with the stellar mass. The analysis for our sample of ~3000 individual H II regions confirms (i) a local mass-metallicity relation and (ii) the lack of a secondary relation with the star-formation rate. The same analysis was performed with similar results for the specific star-formation rate. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, such like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk-dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.


Astrophysical Journal Supplement Series | 2011

THE HETDEX PILOT SURVEY. I. SURVEY DESIGN, PERFORMANCE, AND CATALOG OF EMISSION-LINE GALAXIES

Joshua J. Adams; Guillermo A. Blanc; Gary J. Hill; Karl Gebhardt; Niv Drory; Lei Hao; Ralf Bender; Joyce Byun; Robin Ciardullo; Mark E. Cornell; Steven L. Finkelstein; Alex Fry; Eric Gawiser; Caryl Gronwall; Ulrich Hopp; Donghui Jeong; Andreas Kelz; Ralf Kelzenberg; Eiichiro Komatsu; Phillip J. MacQueen; Jeremy D. Murphy; P. Samuel Odoms; Martin M. Roth; Donald P. Schneider; Joseph R. Tufts; Christopher P. Wilkinson

We present a catalog of emission-line galaxies selected sol ly by their emission-line fluxes using a wide-field integral field spectrograph. This work is partially motivat ed as a pilot survey for the upcoming Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). We describe the observations, reductions, detections, redshift classifications, line fluxes, and counterpart information f r 397 emission-line galaxies detected over 169 ⊓⊔ with a 3500-5800̊A bandpass under 5̊ A full-width-half-maximum (FWHM) spectral resolution. Th e survey’s best sensitivity for unresolved objects under photometric conditions is between 4− 20× 10 erg s cm depending on the wavelength, and Ly α luminosities between3− 6× 10 erg s are detectable. This survey method complements narrowband and color-selection techni ques in the search for high redshift galaxies with its different selection properties and large volume probed. Th e four survey fields within the COSMOS, GOODS-N, MUNICS, and XMM-LSS areas are rich with existing, complemen tary data. We find 104 galaxies via their high redshift Lyα emission at1.9 < z < 3.8, and the majority of the remainder objects are low redshift [ OII]3727 emitters atz < 0.56. The classification between low and high redshift objects de pends on rest frame equivalent width, as well as other indicators, where available. Based o n matches to X-ray catalogs, the active galactic nuclei (AGN) fraction amongst the Ly α emitters (LAEs) is 6%. We also analyze the survey’s complete ness and contamination properties through simulations. We find fi ve high-z, highly-significant, resolved objects with full-width-half-maximum sizes> 44 ⊓⊔ which appear to be extended Ly α nebulae. We also find three high-z objects with rest frame Ly α equivalent widths above the level believed to be achievable with normal star formation, EW0 > 240Å. Future papers will investigate the physical properties o f this sample. Subject headings: galaxies: formation — galaxies: evolution —galaxies: high -redshift — cosmology: observations


Astronomy and Astrophysics | 2012

The ionized gas in the CALIFA early-type galaxies - I. Mapping two representative cases: NGC 6762 and NGC 5966

C. Kehrig; A. Monreal-Ibero; P. Papaderos; J. M. Vílchez; Júlio Gomes; J. Masegosa; S. F. Sánchez; M. D. Lehnert; R. Cid Fernandes; Joss Bland-Hawthorn; D. J. Bomans; I. Márquez; D. Mast; J. A. L. Aguerri; A. R. Lopez-Sanchez; R. A. Marino; Anna Pasquali; Isabel Pérez; Martin M. Roth; P. Sánchez-Blázquez; Bodo L. Ziegler

As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745–7300 A) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1′ × 1′) covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an “ionization cone” are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first “ionization cone” of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 A] and have very low excitation, log([OIII]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([OIII]λ5007/Hβ, [NII]λ6584/Hα, [SII]λ6717, 6731/Hα, [OI]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the “ionization cone” scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure.


Nature Communications | 2011

A complex multi-notch astronomical filter to suppress the bright infrared sky

Joss Bland-Hawthorn; Simon C. Ellis; Sergio G. Leon-Saval; Roger Haynes; Martin M. Roth; Hans-Gerd Löhmannsröben; Anthony Horton; J. G. Cuby; T. A. Birks; Jon Lawrence; Peter Gillingham; S. D. Ryder; Christopher Trinh

A long-standing and profound problem in astronomy is the difficulty in obtaining deep near-infrared observations due to the extreme brightness and variability of the night sky at these wavelengths. A solution to this problem is crucial if we are to obtain the deepest possible observations of the early Universe, as redshifted starlight from distant galaxies appears at these wavelengths. The atmospheric emission between 1,000 and 1,800 nm arises almost entirely from a forest of extremely bright, very narrow hydroxyl emission lines that varies on timescales of minutes. The astronomical community has long envisaged the prospect of selectively removing these lines, while retaining high throughput between them. Here we demonstrate such a filter for the first time, presenting results from the first on-sky tests. Its use on current 8 m telescopes and future 30 m telescopes will open up many new research avenues in the years to come.


Astronomy and Astrophysics | 2013

CALIFA, the Calar Alto Legacy Integral Field Area survey IV. Third public data release

R. García-Benito; S. Zibetti; S. F. Sánchez; B. Husemann; A. L. de Amorim; A. Castillo-Morales; R. Cid Fernandes; Simon C. Ellis; J. Falcón-Barroso; L. Galbany; A. Gil de Paz; R. M. González Delgado; E. A. D. Lacerda; R. Lopez-Fernandez; A. de Lorenzo-Cáceres; Mariya Lyubenova; R. A. Marino; D. Mast; M. A. Mendoza; Emmanuelle Perez; N. Vale Asari; J. A. L. Aguerri; Y. Ascasibar; Joss Bland-Hawthorn; J. K. Barrera-Ballesteros; D. J. Bomans; M. Cano-Díaz; Cristina Catalán-Torrecilla; C. Cortijo; Gloria Delgado-Inglada

We present a dynamical classification system for galaxies based on the shapes of their circular velocity curves (CVCs). We derive the CVCs of 40 SAURON and 42 CALIFA galaxies across Hubble sequence via a full line-of-sight integration as provided by solutions of the axisymmetric Jeans equations. We use Principal Component Analysis (PCA) applied to the circular curve shapes to find characteristic features and use a k-means classifier to separate circular curves into classes. This objective classification method identifies four different classes, which we name Slow-Rising (SR), Flat (F), Sharp-Peaked (SP) and Round-Peaked (RP) circular curves. SR-CVCs are mostly represented by late-type spiral galaxies (Scd-Sd) with no prominent spheroids in the central parts and slowly rising velocities; F-CVCs span almost all morphological types (E,S0,Sab,Sb-Sbc) with flat velocity profiles at almost all radii; SP-CVCs are represented by early-type and early-type spiral galaxies (E,S0,Sb-Sbc) with prominent spheroids and sharp peaks in the central velocities. RP-CVCs are represented by only two morphological types (E,Sa-Sab) with prominent spheroids, but RP-CVCs have much rounder peaks in the central velocities than SP-CVCs. RP-CVCs are typical for high-mass galaxies, while SR-CVCs are found for low-mass galaxies. Intermediate-mass galaxies usually have F-CVCs and SP-CVCs. Circular curve classification presents an alternative to typical morphological classification and may be more tightly linked to galaxy evolution.This paper describes the Third Public Data Release (DR3) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. Science-grade quality data for 667 galaxies are made public, including the 200 galaxies of the Second Public Data Release (DR2). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5m telescope at the Calar Alto Observatory. Three different spectral setups are available, i) a low-resolution V500 setup covering the wavelength range 3749-7500 AA (4240-7140 AA unvignetted) with a spectral resolution of 6.0 AA (FWHM), for 646 galaxies, ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840 AA (3650-4620 AA unvignetted) with a spectral resolution of 2.3 AA (FWHM), for 484 galaxies, and iii) the combination of the cubes from both setups (called COMBO), with a spectral resolution of 6.0 AA and a wavelength range between 3700-7500 AA (3700-7140 AA unvignetted), for 446 galaxies. The Main Sample, selected and observed according to the CALIFA survey strategy covers a redshift range between 0.005 and 0.03, spans the color-magnitude diagram and probes a wide range of stellar mass, ionization conditions, and morphological types. The Extension Sample covers several types of galaxies that are rare in the overall galaxy population and therefore not numerous or absent in the CALIFA Main Sample. All the cubes in the data release were processed using the latest pipeline, which includes improved versions of the calibration frames and an even further improved im- age reconstruction quality. In total, the third data release contains 1576 datacubes, including ~1.5 million independent spectra. It is available at this http URL


Astronomy and Astrophysics | 2010

p3d: a general data-reduction tool for fiber-fed integral-field spectrographs

Christer Sandin; Thomas Becker; Martin M. Roth; Joris Gerssen; Ana Monreal-Ibero; Petra Böhm; Peter M. Weilbacher

The reduction of integral-field spectrograph (IFS) data is demanding work. Many repetitive operations are required to convert raw data into, typically, a large number of spectra. This effort can be markedly simplified through the use of a tool or pipeline, which is designed to complete many of the repetitive operations without human interaction. Here we present our semi-automatic data-reduction tool p3d, which is designed to be used with fiber-fed IFSs. Important components of p3d include a novel algorithm for automatic finding and tracing of spectra on the detector and two methods of optimal spectrum extraction in addition to standard aperture extraction. p3d also provides tools to combine several images, perform wavelength calibration and flat field data. p3d is at the moment configured for four IFSs. To evaluate its performance, we tested the different components of the tool. For these tests we used both simulated and observational data. We demonstrate that a correction for so-called cross-talk due to overlapping spectra on the detector is required for three of the IFSs. Without such a correction, spectra will be inaccurate, in particular if there is a significant intensity gradient across the object. Our tests showed that p3d is able to produce accurate results. p3d is a highly general and freely available tool. It is easily extended to include improved algorithms, new visualization tools, and support for additional instruments. The program code can be downloaded from the p3d-project web site http://p3d.sourceforge.net.


Optics Letters | 2014

Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures.

Pouneh Saffari; Thomas D.P. Allsop; Adedotum Adebayo; David J. Webb; Roger Haynes; Martin M. Roth

Long period grating was UV inscribed into a multicore fiber consisting of 120 single mode cores. The multicore fiber that hosts the grating was fusion spliced into a single mode fiber at both ends. The splice creates a taper transition between the two types of fiber that produces a nonadiabatic mode evolution; this results in the illumination of all the modes in the multicore fiber. The spectral characteristics of this fiber device as a function of curvature were investigated. The device yielded a significant spectral sensitivity as high as 1.23  nm/m(-1) and 3.57  dB/m(-1) to the ultra-low curvature values from 0 to 1  m(-1). This fiber device can also distinguish the orientation of curvature experienced by the fiber as the long period grating attenuation bands producing either a blue or red wavelength shift. The finite element method (FEM) model was used to investigate the modal behavior in multicore fiber and to predict the phase-matching curves of the long period grating inscribed into multicore fiber.


Astronomy and Astrophysics | 2015

Imprints of galaxy evolution on H II regions memory of the past uncovered by the CALIFA survey

S. F. Sánchez; E. Pérez; F. F. Rosales Ortega; D.Miralles Caballero; A. R. López Sánchez; J. Iglesias Páramo; R. A. Marino; L. Sánchez Menguiano; R. García Benito; D. Mast; M. A. Mendoza; P. Papaderos; Simon C. Ellis; L. Galbany; C. Kehrig; A. Monreal Ibero; R. M. González Delgado; M. Mollá; Bodo L. Ziegler; A. de Lorenzo Cáceres; J. Méndez Abreu; Joss Bland-Hawthorn; S. Bekeraite; Martin M. Roth; Anna Pasquali; Angeles I. Díaz; D. J. Bomans; G. van de Ven; L. Wisotzki

Context. H II regions in galaxies are the sites of star formation, so they are special places for understanding the build-up of stellar mass in the universe. The line ratios of this ionized gas are frequently used to characterize the ionization conditions. In particular, the oxygen abundances are assumed to trace the chemical enrichment of galaxies. Aims. We explore the connections between the ionization conditions and the properties of the overall underlying stellar population (ionizing or not-ionizing) in H II regions, in order to uncover the actual physical connection between them. Methods. We use the H II regions catalog from the CALIFA survey, which is the largest in existence with more than 5000 H II regions, to explore their distribution across the classical [O III] lambda 5007/H beta vs. [N II] lambda 6583/H alpha diagnostic diagram, and the way it depends on the oxygen abundance, ionization parameter, electron density, and dust attenuation. The location of H II regions within this diagram is compared with predictions from photoionization models. Finally, we explore the dependence of the location within the diagnostic diagram on the properties of the host galaxies, the galactocentric distances, and the properties of the underlying stellar population. Results. The H II regions with weaker ionization strengths and more metal-rich are located in the bottom righthand area of the diagram. In contrast, those regions with stronger ionization strengths and more metal poor are located in the upper lefthand end of the diagram. Photoionization models per se do not predict these correlations between the parameters and the line ratios. The H II regions located in earlier-type galaxies, closer to the center and formed in older and more metal-rich regions of the galaxies are located in the bottom-right area of the diagram. On the other hand, those regions located in late-type galaxies in the outer regions of the disks and formed on younger and more metal-poor regions lie in the top lefthand area of the diagram. The two explored line ratios show strong correlations with the age and metallicity of the underlying stellar population. Conclusions. These results indicate that although H II regions are short-lived events, they are affected by the total underlying stellar population. One may say that H II regions keep a memory of the stellar evolution and chemical enrichment that have left an imprint on both the ionizing stellar population and the ionized gas.

Collaboration


Dive into the Martin M. Roth's collaboration.

Top Co-Authors

Avatar

Andreas Kelz

American Institute of Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Becker

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Bacon

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary J. Hill

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Phillip J. MacQueen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

D. Bodenmüller

Leibniz Institute for Astrophysics Potsdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge