Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Marek is active.

Publication


Featured researches published by Martin Marek.


Nature | 2014

Anp32E is a Histone Chaperone that Removes H2A.Z from Chromatin

Arnaud Obri; Khalid Ouararhni; Christophe Papin; Marie-Laure Diebold; Kiran Padmanabhan; Martin Marek; Isabelle Stoll; Ludovic Roy; Patrick T. Reilly; Tak W. Mak; Stefan Dimitrov; Christophe Romier; Ali Hamiche

H2A.Z is an essential histone variant implicated in the regulation of key nuclear events. However, the metazoan chaperones responsible for H2A.Z deposition and its removal from chromatin remain unknown. Here we report the identification and characterization of the human protein ANP32E as a specific H2A.Z chaperone. We show that ANP32E is a member of the presumed H2A.Z histone-exchange complex p400/TIP60. ANP32E interacts with a short region of the docking domain of H2A.Z through a new motif termed H2A.Z interacting domain (ZID). The 1.48 Å resolution crystal structure of the complex formed between the ANP32E-ZID and the H2A.Z/H2B dimer and biochemical data support an underlying molecular mechanism for H2A.Z/H2B eviction from the nucleosome and its stabilization by ANP32E through a specific extension of the H2A.Z carboxy-terminal α-helix. Finally, analysis of H2A.Z localization in ANP32E−/− cells by chromatin immunoprecipitation followed by sequencing shows genome-wide enrichment, redistribution and accumulation of H2A.Z at specific chromatin control regions, in particular at enhancers and insulators.


PLOS Pathogens | 2013

Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni.

Martin Marek; Srinivasaraghavan Kannan; Alexander-Thomas Hauser; Marina M. Mourão; Stéphanie Caby; Vincent Cura; Diana A. Stolfa; Karin Schmidtkunz; Julien Lancelot; Luiza F. Andrade; Jean-Paul Renaud; Guilherme Oliveira; Wolfgang Sippl; Manfred Jung; Jean Cavarelli; Raymond J. Pierce; Christophe Romier

The treatment of schistosomiasis, a disease caused by blood flukes parasites of the Schistosoma genus, depends on the intensive use of a single drug, praziquantel, which increases the likelihood of the development of drug-resistant parasite strains and renders the search for new drugs a strategic priority. Currently, inhibitors of human epigenetic enzymes are actively investigated as novel anti-cancer drugs and have the potential to be used as new anti-parasitic agents. Here, we report that Schistosoma mansoni histone deacetylase 8 (smHDAC8), the most expressed class I HDAC isotype in this organism, is a functional acetyl-L-lysine deacetylase that plays an important role in parasite infectivity. The crystal structure of smHDAC8 shows that this enzyme adopts a canonical α/β HDAC fold, with specific solvent exposed loops corresponding to insertions in the schistosome HDAC8 sequence. Importantly, structures of smHDAC8 in complex with generic HDAC inhibitors revealed specific structural changes in the smHDAC8 active site that cannot be accommodated by human HDACs. Using a structure-based approach, we identified several small-molecule inhibitors that build on these specificities. These molecules exhibit an inhibitory effect on smHDAC8 but show reduced affinity for human HDACs. Crucially, we show that a newly identified smHDAC8 inhibitor has the capacity to induce apoptosis and mortality in schistosomes. Taken together, our biological and structural findings define the framework for the rational design of small-molecule inhibitors specifically interfering with schistosome epigenetic mechanisms, and further support an anti-parasitic epigenome targeting strategy to treat neglected diseases caused by eukaryotic pathogens.


Biotechnology and Bioengineering | 2011

Engineering of baculovirus vectors for the manufacture of virion-free biopharmaceuticals.

Martin Marek; Monique M. van Oers; Feana Francis Devaraj; Just M. Vlak; Otto-Wilhelm Merten

A novel baculovirus‐based protein expression strategy was developed to produce recombinant proteins in insect cells without contaminating baculovirus virions. This novel strategy greatly simplifies the downstream processing of biopharmaceuticals produced in insect cells. The formation of these virions is prevented by deletion of a baculovirus gene essential for virion formation. The deletion is trans‐complemented in a transgenic insect cell line in which the baculovirus seed stock is produced. The Autographa californica multicapsid nucleopolyhedrovirus vp80 gene was selected for this purpose, as absence of VP80 prevented the formation of budded virus as well as occlusion‐derived virus, while foreign gene expression was not affected. Sf9 insect cells were engineered to functionally complement the vp80 deletion in the expression vector virus during seed stock production. The trans‐complemented vp80‐deletion baculovirus seed produced an amount of recombinant protein similar to that produced with conventional baculovirus vectors but without contaminating virions. This novel expression method obviates the need to purify the virions away from the biopharmaceuticals. Bioeng. 2011; 108:1056–1067.


Journal of Medicinal Chemistry | 2016

Structure-Based Design and Synthesis of Novel Inhibitors Targeting HDAC8 from Schistosoma mansoni for the Treatment of Schistosomiasis

Tino Heimburg; Alokta Chakrabarti; Julien Lancelot; Martin Marek; Jelena Melesina; Alexander-Thomas Hauser; Tajith B. Shaik; Sylvie Duclaud; Dina Robaa; Frank Erdmann; Matthias Schmidt; Christophe Romier; Raymond J. Pierce; Manfred Jung; Wolfgang Sippl

Schistosomiasis is a major neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. In this study, a series of new benzohydroxamates were prepared as potent inhibitors of Schistosoma mansoni histone deacetylase 8 (smHDAC8). Crystallographic analysis provided insights into the inhibition mode of smHDAC8 activity by these 3-amidobenzohydroxamates. The newly designed inhibitors were evaluated in screens for enzyme inhibitory activity against schistosome and human HDACs. Twenty-seven compounds were found to be active in the nanomolar range, and some of them showed selectivity toward smHDAC8 over the major human HDACs (1 and 6). The active benzohydroxamates were additionally screened for lethality against the schistosome larval stage using a fluorescence-based assay. Four of these showed significant dose-dependent killing of the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained in culture.


Journal of Virology | 2011

Baculovirus VP80 Protein and the F-Actin Cytoskeleton Interact and Connect the Viral Replication Factory with the Nuclear Periphery

Martin Marek; Otto-Wilhelm Merten; Lionel Galibert; Just M. Vlak; Monique M. van Oers

ABSTRACT Recently, we showed that the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) VP80 protein is essential for the formation of both virion types, budded virus (BV) and occlusion-derived virus (ODV). Deletion of the vp80 gene did not affect assembly of nucleocapsids. However, these nucleocapsids were not able to migrate from the virogenic stroma to the nuclear periphery. In the current paper, we constructed a baculovirus recombinant with enhanced-green fluorescent protein (EGFP)-tagged VP80, allowing visualization of the VP80 distribution pattern during infection. In baculovirus-infected cells, the EGFP-VP80 protein is entirely localized in nuclei, adjacent to the virus-triggered F-actin scaffold that forms a highly organized three-dimensional network connecting the virogenic stroma physically with the nuclear envelope. Interaction between VP80 and host actin was confirmed by coimmunoprecipitation. We further showed that VP80 is associated with the nucleocapsid fraction of both BVs and ODVs, typically at one end of the nucleocapsids. In addition, the presence of sequence motifs with homology to invertebrate paramyosin proteins strongly supports a role for VP80 in the polar transport of nucleocapsids to the periphery of the nucleus on their way to the plasma membrane to form BVs and for assembly in the nuclear periphery to form ODVs for embedding in viral occlusion bodies.


Journal of Molecular Biology | 2014

Molecular Basis for the Antiparasitic Activity of a Mercaptoacetamide Derivative That Inhibits Histone Deacetylase 8 (HDAC8) from the Human Pathogen Schistosoma mansoni

Diana A. Stolfa; Martin Marek; Julien Lancelot; Alexander-Thomas Hauser; Alexandra Walter; Emeline Leproult; Jelena Melesina; Tobias Rumpf; Jean-Marie Wurtz; Jean Cavarelli; Wolfgang Sippl; Raymond J. Pierce; Christophe Romier; Manfred Jung

Schistosomiasis, caused by the parasitic flatworm Schistosoma mansoni and related species, is a tropical disease that affects over 200 million people worldwide. A new approach for targeting eukaryotic parasites is to tackle their dynamic epigenetic machinery that is necessary for the extensive phenotypic changes during the life cycle of the parasite. Recently, we identified S. mansoni histone deacetylase 8 (smHDAC8) as a potential target for antiparasitic therapy. Here, we present results on the investigations of a focused set of HDAC (histone deacetylase) inhibitors on smHDAC8. Besides several active hydroxamates, we identified a thiol-based inhibitor that inhibited smHDAC8 activity in the micromolar range with unexpected selectivity over the human isotype, which has not been observed so far. The crystal structure of smHDAC8 complexed with the thiol derivative revealed that the inhibitor is accommodated in the catalytic pocket, where it interacts with both the catalytic zinc ion and the essential catalytic tyrosine (Y341) residue via its mercaptoacetamide warhead. To our knowledge, this is the first complex crystal structure of any HDAC inhibited by a mercaptoacetamide inhibitor, and therefore, this finding offers a rationale for further improvement. Finally, an ester prodrug of the thiol HDAC inhibitor exhibited antiparasitic activity on cultured schistosomes in a dose-dependent manner.


FEBS Letters | 2005

Polyomavirus EGFP-pseudocapsids: Analysis of model particles for introduction of proteins and peptides into mammalian cells

E. Bouřa; David Liebl; R. Špíšek; Jan Fric; Martin Marek; Jitka Štokrová; Vladimír Holáň; Jitka Forstová

A vector for preparation of mouse polyomavirus capsid‐like particles for transfer of foreign peptides or proteins into cells was constructed. Model pseudocapsids carrying EGFP fused with the C‐terminal part of the VP3 minor protein (EGFP‐VLPs) have been prepared and analysed for their ability to be internalised and processed by mouse cells and to activate mouse and human dendritic cells (DC) in vitro. EGFP‐VLPs entered mouse epithelial cells, fibroblasts and human and mouse DC efficiently and were processed by both, lysosomes and proteasomes. Surprisingly, they did not induce upregulation of DC co‐stimulation molecules or maturation markers in vitro; however, they did induce interleukin 12 secretion.


Journal of Chemical Information and Modeling | 2014

Discovery of inhibitors of Schistosoma mansoni HDAC8 by combining homology modeling, virtual screening, and in vitro validation.

Srinivasaraghavan Kannan; Jelena Melesina; Alexander-Thomas Hauser; Alokta Chakrabarti; Tino Heimburg; Karin Schmidtkunz; Alexandra Walter; Martin Marek; Raymond J. Pierce; Christophe Romier; Manfred Jung; Wolfgang Sippl

Schistosomiasis, caused by S. mansoni, is a tropical disease that affects over 200 million people worldwide. A novel approach for targeting eukaryotic parasites is to tackle their dynamic epigenetic machinery that is necessary for the extensive phenotypic changes during their life cycle. We recently identified S. mansoni histone deacetylase 8 (smHDAC8) as a potential target for antiparasitic therapy. Here we present results from a virtual screening campaign on smHDAC8. Besides hydroxamates, several sulfonamide-thiazole derivatives were identified by a target-based virtual screening using a homology model of smHDAC8. In vitro testing of 75 compounds identified 8 hydroxamates as potent and lead-like inhibitors of the parasitic HDAC8. Solving of the crystal structure of smHDAC8 with two of the virtual screening hits confirmed the predicted binding mode.


Virologica Sinica | 2009

Encyclopedia of Autographa californica nucleopolyhedrovirus genes

D.P.A. Cohen; Martin Marek; Bryn G. Davies; Just M. Vlak; Monique M. van Oers

The Autographa californica multiple capsid nucleopolyhedrovirus (AcMNPV) was the first baculovirus for which the complete nucleotide sequence became known. Since then 15 years lapsed and much research has been performed to elucidate putative functions of the annotated open reading frames of this virus and this endeavour is still ongoing. AcMNPV is the most well-known and well-studied baculovirus species, not in the least for its application as a vector for the high-level expression of foreign genes in insect cells. This article is the first monograph of a single baculovirus and gives a current overview of what is known about the 151 AcMNPV ORFs, including (putative) function and temporal and spatial presence of transcripts and protein. To date 60 ORFs have a proven function, another 19 ORFs have homologs for which functions are known in other baculoviruses and 72 ORFs are still enigmatic. This paper should assist the reader in quickly finding the essentials of AcMNPV.


Journal of Medicinal Chemistry | 2016

Synthesis and Biological Investigation of Oxazole Hydroxamates as Highly Selective Histone Deacetylase 6 (HDAC6) Inhibitors

Johanna Senger; Jelena Melesina; Martin Marek; Christophe Romier; Ina Oehme; Olaf Witt; Wolfgang Sippl; Manfred Jung

Histone deacetylase 6 (HDAC6) catalyzes the removal of an acetyl group from lysine residues of several non-histone proteins. Here we report the preparation of thiazole-, oxazole-, and oxadiazole-containing biarylhydroxamic acids by a short synthetic procedure. We identified them as selective HDAC6 inhibitors by investigating the inhibition of recombinant HDAC enzymes and the protein acetylation in cells by Western blotting (tubulin vs histone acetylation). The most active compounds exhibited nanomolar potency and high selectivity for HDAC6. For example, an oxazole hydroxamate inhibits HDAC6 with an IC50 of 59 nM and has a selectivity index of >200 against HDAC1 and HDAC8. This is the first report showing that the nature of a heterocycle directly connected to a zinc binding group (ZBG) can be used to modulate subtype selectivity and potency for HDAC6 inhibitors to such an extent. We rationalize the high potency and selectivity of the oxazoles by molecular modeling and docking.

Collaboration


Dive into the Martin Marek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge