Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin McKibbin is active.

Publication


Featured researches published by Martin McKibbin.


American Journal of Human Genetics | 2006

Quantification of homozygosity in consanguineous individuals with autosomal recessive disease.

C. Geoffrey Woods; James J. Cox; Kelly Springell; Daniel J. Hampshire; Moin D. Mohamed; Martin McKibbin; Rowena Stern; F. Lucy Raymond; Richard Sandford; Saghira Malik Sharif; Gulshan Karbani; Mustaq Ahmed; Jacquelyn Bond; David G. Clayton; Chris F. Inglehearn

Individuals born of consanguineous union have segments of their genomes that are homozygous as a result of inheriting identical ancestral genomic segments through both parents. One consequence of this is an increased incidence of recessive disease within these sibships. Theoretical calculations predict that 6% (1/16) of the genome of a child of first cousins will be homozygous and that the average homozygous segment will be 20 cM in size. We assessed whether these predictions held true in populations that have preferred consanguineous marriage for many generations. We found that in individuals with a recessive disease whose parents were first cousins, on average, 11% of their genomes were homozygous (n = 38; range 5%-20%), with each individual bearing 20 homozygous segments exceeding 3 cM (n = 38; range of number of homozygous segments 7-32), and that the size of the homozygous segment associated with recessive disease was 26 cM (n = 100; range 5-70 cM). These data imply that prolonged parental inbreeding has led to a background level of homozygosity increased approximately 5% over and above that predicted by simple models of consanguinity. This has important clinical and research implications.


American Journal of Human Genetics | 2009

Null mutations in LTBP2 cause primary congenital glaucoma

Manir Ali; Martin McKibbin; Adam D. Booth; David A. Parry; Payal Jain; S. Amer Riazuddin; J. Fielding Hejtmancik; Shaheen N. Khan; Sabika Firasat; Mike Shires; David F. Gilmour; Katherine V. Towns; Anna Louise Murphy; Dimitar N. Azmanov; Ivailo Tournev; Sylvia Cherninkova; Hussain Jafri; Yasmin Raashid; Carmel Toomes; Jamie E. Craig; David A. Mackey; Luba Kalaydjieva; Sheikh Riazuddin; Chris F. Inglehearn

Primary congenital glaucoma (PCG) is an autosomal-recessive condition characterized by high intraocular pressure (IOP), usually within the first year of life, which potentially could lead to optic nerve damage, globe enlargement, and permanent loss of vision. To date, PCG has been linked to three loci: 2p21 (GLC3A), for which the responsible gene is CYP1B1, and 1p36 (GLC3B) and 14q24 (GLC3C), for which the genes remain to be identified. Here we report that null mutations in LTBP2 cause PCG in four consanguineous families from Pakistan and in patients of Gypsy ethnicity. LTBP2 maps to chromosome 14q24.3 but is around 1.3 Mb proximal to the documented GLC3C locus. Therefore, it remains to be determined whether LTBP2 is the GLC3C gene or whether a second adjacent gene is also implicated in PCG. LTBP2 is the largest member of the latent transforming growth factor (TGF)-beta binding protein family, which are extracellular matrix proteins with multidomain structure. It has homology to fibrillins and may have roles in cell adhesion and as a structural component of microfibrils. We confirmed localization of LTBP2 in the anterior segment of the eye, at the ciliary body, and particularly the ciliary process. These findings reveal that LTBP2 is essential for normal development of the anterior chamber of the eye, where it may have a structural role in maintaining ciliary muscle tone.


Nature Genetics | 2007

Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis.

Anneke I. den Hollander; Robert K. Koenekoop; M D Mohamed; Heleen H. Arts; Karsten Boldt; Katherine V. Towns; Tina Sedmak; Monika Beer; Kerstin Nagel-Wolfrum; Martin McKibbin; Sharola Dharmaraj; Irma Lopez; Lenka Ivings; G. Williams; Kelly Springell; C. Geoff Woods; Hussain Jafri; Yasmin Rashid; Tim M. Strom; Bert van der Zwaag; Ilse Gosens; Ferry F.J. Kersten; Erwin van Wijk; Joris A. Veltman; Marijke N Zonneveld; Sylvia E. C. van Beersum; Irene H. Maumenee; Uwe Wolfrum; Michael E. Cheetham; Marius Ueffing

Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We detected homozygous nonsense and frameshift mutations in LCA5 in five families affected with LCA. In a sixth family, the LCA5 transcript was completely absent. LCA5 is expressed widely throughout development, although the phenotype in affected individuals is limited to the eye. Lebercilin localizes to the connecting cilia of photoreceptors and to the microtubules, centrioles and primary cilia of cultured mammalian cells. Using tandem affinity purification, we identified 24 proteins that link lebercilin to centrosomal and ciliary functions. Members of this interactome represent candidate genes for LCA and other ciliopathies. Our findings emphasize the emerging role of disrupted ciliary processes in the molecular pathogenesis of LCA.


Nature Genetics | 2012

Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration

Robert K. Koenekoop; Hui Wang; Jacek Majewski; Xia Wang; Irma Lopez; Huanan Ren; Yiyun Chen; Yumei Li; Gerald A. Fishman; Mohammed Genead; Jeremy Schwartzentruber; Naimesh Solanki; Elias I. Traboulsi; Jingliang Cheng; Clare V. Logan; Martin McKibbin; Bruce E. Hayward; David A. Parry; Colin A. Johnson; Mohammed Nageeb; James A. Poulter; Moin D. Mohamed; Hussain Jafri; Yasmin Rashid; Graham R. Taylor; Vafa Keser; Graeme Mardon; Huidan Xu; Chris F. Inglehearn; Qing Fu

Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wlds) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder.


American Journal of Human Genetics | 2009

Missense Mutations in a Retinal Pigment Epithelium Protein, Bestrophin-1, Cause Retinitis Pigmentosa

Alice E. Davidson; I. D. Millar; Jill Urquhart; Rosemary Burgess-Mullan; Yusrah Shweikh; Neil R. A. Parry; James O'Sullivan; Geoffrey J. Maher; Martin McKibbin; Susan M. Downes; Andrew J. Lotery; Samuel G. Jacobson; Peter D. Brown; Graeme C.M. Black; Forbes D.C. Manson

Bestrophin-1 is preferentially expressed at the basolateral membrane of the retinal pigmented epithelium (RPE) of the retina. Mutations in the BEST1 gene cause the retinal dystrophies vitelliform macular dystrophy, autosomal-dominant vitreochoroidopathy, and autosomal-recessive bestrophinopathy. Here, we describe four missense mutations in bestrophin-1, three that we believe are previously unreported, in patients diagnosed with autosomal-dominant and -recessive forms of retinitis pigmentosa (RP). The physiological function of bestrophin-1 remains poorly understood although its heterologous expression induces a Cl--specific current. We tested the effect of RP-causing variants on Cl- channel activity and cellular localization of bestrophin-1. Two (p.L140V and p.I205T) produced significantly decreased chloride-selective whole-cell currents in comparison to those of wild-type protein. In a model system of a polarized epithelium, two of three mutations (p.L140V and p.D228N) caused mislocalization of bestrophin-1 from the basolateral membrane to the cytoplasm. Mutations in bestrophin-1 are increasingly recognized as an important cause of inherited retinal dystrophy.


British Journal of Ophthalmology | 2012

CFH, VEGF and HTRA1 promoter genotype may influence the response to intravitreal ranibizumab therapy for neovascular age-related macular degeneration

Martin McKibbin; Manir Ali; Shveta Bansal; Paul D. Baxter; Kumi West; G. Williams; Frances Cassidy; Chris F. Inglehearn

Aims To investigate an association between genotype for three single nucleotide polymorphisms strongly associated with the development of age-related macular degeneration (AMD) and the early response to treatment with intravitreal ranibizumab for neovascular AMD. Methods Best corrected visual acuity letter score was recorded at baseline and each subsequent visit. Age, sex, smoking history, lesion type and the number of injections were also recorded. Genotypes were obtained for rs11200638 in HTRA1, rs1061170 in CFH and rs1413711 in VEGF. Data were analysed with treatment response at month 6 as both a binary (>5 letter improvement vs ≤5 letter gain) and a linear trait. Results This initial study cohort consisted of 104 Caucasian neovascular AMD patients treated with intravitreal ranibizumab. Trends towards a more favourable outcome were seen with the higher AMD risk genotypes in CFH and VEGF in both the linear and binary models and in HTRA1 in the linear model alone. For CFH, mean letter score change after 6 months was +1.6, +5.9 and +7.2 letters for the TT, TC and CC genotypes and a >5 letter gain was seen in 34.6%, 56.6% and 56%, respectively. For VEGF, mean letter score change after 6 months was +1.3, +5.8 and +7.4 letters for the TT, TC and CC genotypes and a >5 letter gain was seen in 40%, 55.8% and 51.9%, respectively. For HTRA1, mean letter score change was +2.2, +7.5 and +2.9 letters for the GG, GA and AA genotypes. Conclusions This study reports preliminary evidence suggesting that the higher AMD risk genotypes in CFH, VEGF and HTRA1 may influence the short-term response to treatment with ranibizumab for neovascular AMD.


British Journal of Ophthalmology | 2007

Purtscher’s retinopathy: epidemiology, clinical features and outcome

Ashish Agrawal; Martin McKibbin

Aims: To study the incidence, systemic associations, presenting features and natural history of Purtscher’s retinopathy in the UK and Ireland. Methods: Cases were collected prospectively by active surveillance through the British Ophthalmological Surveillance Unit. Clinical details were obtained using an incident questionnaire, with follow-up at 1 and 6 months. Results: Clinical details were obtained for 15 cases over 12 months. These were associated with road traffic accidents in 6 cases, chest compression in 6 cases and acute pancreatitis in 3 cases. All cases were symptomatic and presented with loss of visual acuity, visual field or a combination. Bilateral involvement was noted in 9 cases. The acute retinal signs of cotton wool spots, retinal haemorrhage and Purtscher flecken cleared within 1 month in 26% of eyes and within 6 months in all eyes. The most common chronic signs were optic disc pallor and atrophy of the retinal pigment epithelium. Without treatment, 50% of eyes improved by at least 2 Snellen lines at final follow-up and 23% improved by at least 4 Snellen lines. Only 1 of the 24 eyes had a final acuity worse than that recorded at presentation. Conclusion: Purtscher’s retinopathy is a rare but sight-threatening eye condition, most commonly seen in young or middle-aged men and after trauma. Spontaneous visual recovery of at least 2 Snellen lines is seen in half of the cases.


Nature Cell Biology | 2015

An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

Gabrielle Wheway; Miriam Schmidts; Dorus A. Mans; Katarzyna Szymanska; Thanh Minh T Nguyen; Hilary Racher; Ian G. Phelps; Grischa Toedt; Julie Kennedy; Kirsten A. Wunderlich; Nasrin Sorusch; Zakia Abdelhamed; Subaashini Natarajan; Warren Herridge; Jeroen van Reeuwijk; Nicola Horn; Karsten Boldt; David A. Parry; Stef J.F. Letteboer; Susanne Roosing; Matthew Adams; Sandra M. Bell; Jacquelyn Bond; Julie Higgins; Ewan E. Morrison; Darren C. Tomlinson; Gisela G. Slaats; Teunis J. P. van Dam; Lijia Huang; Kristin Kessler

Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin–proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.


European Journal of Human Genetics | 2003

Identification of a locus (LCA9) for Leber's congenital amaurosis on chromosome 1p36

T. Jeffrey Keen; Moin D. Mohamed; Martin McKibbin; Yasmin Rashid; Hussain Jafri; Irene H. Maumenee; Chris F. Inglehearn

Lebers congenital amaurosis (LCA) is the most common cause of inherited childhood blindness and is characterised by severe retinal degeneration at or shortly after birth. We have identified a new locus, LCA9, on chromosome 1p36, at which the disease segregates in a single consanguineous Pakistani family. Following a whole genome linkage search, an autozygous region of 10 cM was identified between the markers D1S1612 and D1S228. Multipoint linkage analysis generated a lod score of 4.4, strongly supporting linkage to this region. The critical disease interval contains at least 5.7 Mb of DNA and around 50 distinct genes. One of these, retinoid binding protein 7 (RBP7), was screened for mutations in the family, but none was found.


American Journal of Human Genetics | 2009

Loss of the Metalloprotease ADAM9 Leads to Cone-Rod Dystrophy in Humans and Retinal Degeneration in Mice

David A. Parry; Carmel Toomes; Lina Bida; Michael Danciger; Katherine V. Towns; Martin McKibbin; Samuel G. Jacobson; Clare V. Logan; Manir Ali; Jacquelyn Bond; Rebecca K. Chance; Steven L. Swendeman; Lauren L. Daniele; Kelly Springell; Matthew Adams; Colin A. Johnson; Adam P. Booth; Hussain Jafri; Yasmin Rashid; Eyal Banin; Tim M. Strom; Debora B. Farber; Dror Sharon; Carl P. Blobel; Edward N. Pugh; Eric A. Pierce; Chris F. Inglehearn

Cone-rod dystrophy (CRD) is an inherited progressive retinal dystrophy affecting the function of cone and rod photoreceptors. By autozygosity mapping, we identified null mutations in the ADAM metallopeptidase domain 9 (ADAM9) gene in four consanguineous families with recessively inherited early-onset CRD. We also found reduced photoreceptor responses in Adam9 knockout mice, previously reported to be asymptomatic. In 12-month-old knockout mice, photoreceptors appear normal, but the apical processes of the retinal pigment epithelium (RPE) cells are disorganized and contact between photoreceptor outer segments (POSs) and the RPE apical surface is compromised. In 20-month-old mice, there is clear evidence of progressive retinal degeneration with disorganized POS and thinning of the outer nuclear layer (ONL) in addition to the anomaly at the POS-RPE junction. RPE basal deposits and macrophages were also apparent in older mice. These findings therefore not only identify ADAM9 as a CRD gene but also identify a form of pathology wherein retinal disease first manifests at the POS-RPE junction.

Collaboration


Dive into the Martin McKibbin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamron Khan

Moorfields Eye Hospital

View shared research outputs
Top Co-Authors

Avatar

Hussain Jafri

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar

Yasmin Rashid

King Edward Medical University

View shared research outputs
Top Co-Authors

Avatar

Hussain Jafri

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge