Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin McMahon is active.

Publication


Featured researches published by Martin McMahon.


Nature | 2003

Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis

Sarah P. Thayer; Marina Pasca di Magliano; Patrick W. Heiser; Corinne Nielsen; Drucilla J. Roberts; Gregory Y. Lauwers; Yan Ping Qi; Stephan Gysin; Carlos Fernandez-del Castillo; Vijay Yajnik; Bozena Antoniu; Martin McMahon; Andrew L. Warshaw; Matthias Hebrok

Hedgehog signalling—an essential pathway during embryonic pancreatic development, the misregulation of which has been implicated in several forms of cancer—may also be an important mediator in human pancreatic carcinoma. Here we report that sonic hedgehog, a secreted hedgehog ligand, is abnormally expressed in pancreatic adenocarcinoma and its precursor lesions: pancreatic intraepithelial neoplasia (PanIN). Pancreata of Pdx–Shh mice (in which Shh is misexpressed in the pancreatic endoderm) develop abnormal tubular structures, a phenocopy of human PanIN-1 and -2. Moreover, these PanIN-like lesions also contain mutations in K-ras and overexpress HER-2/neu, which are genetic mutations found early in the progression of human pancreatic cancer. Furthermore, hedgehog signalling remains active in cell lines established from primary and metastatic pancreatic adenocarcinomas. Notably, inhibition of hedgehog signalling by cyclopamine induced apoptosis and blocked proliferation in a subset of the pancreatic cancer cell lines both in vitro and in vivo. These data suggest that this pathway may have an early and critical role in the genesis of this cancer, and that maintenance of hedgehog signalling is important for aberrant proliferation and tumorigenesis.


Nature Genetics | 2009

BrafV600E cooperates with Pten loss to induce metastatic melanoma

David Dankort; David P. Curley; Robert A. Cartlidge; Betsy Nelson; Anthony N. Karnezis; William Damsky; Mingjian J. You; Ronald A. DePinho; Martin McMahon; Marcus Bosenberg

Mutational activation of BRAF is the earliest and most common genetic alteration in human melanoma. To build a model of human melanoma, we generated mice with conditional melanocyte-specific expression of BRafV600E. Upon induction of BRafV600E expression, mice developed benign melanocytic hyperplasias that failed to progress to melanoma over 15–20 months. By contrast, expression of BRafV600E combined with Pten tumor suppressor gene silencing elicited development of melanoma with 100% penetrance, short latency and with metastases observed in lymph nodes and lungs. Melanoma was prevented by inhibitors of mTorc1 (rapamycin) or MEK1/2 (PD325901) but, upon cessation of drug administration, mice developed melanoma, indicating the presence of long-lived melanoma-initiating cells in this system. Notably, combined treatment with rapamycin and PD325901 led to shrinkage of established melanomas. These mice, engineered with a common genetic profile to human melanoma, provide a system to study melanomas cardinal feature of metastasis and for preclinical evaluation of agents designed to prevent or treat metastatic disease.


Molecular and Cellular Biology | 1997

Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1.

Douglas Woods; David Parry; Holly Cherwinski; Elizabeth Bosch; Emma Lees; Martin McMahon

The Raf family of protein kinases display differences in their abilities to promote the entry of quiescent NIH 3T3 cells into the S phase of the cell cycle. Although conditional activation of deltaA-Raf:ER promoted cell cycle progression, activation of deltaRaf-1:ER and deltaB-Raf:ER elicited a G1 arrest that was not overcome by exogenously added growth factors. Activation of all three deltaRaf:ER kinases led to elevated expression of cyclin D1 and cyclin E and reduced expression of p27Kip1. However, activation of deltaB-Raf:ER and deltaRaf-1:ER induced the expression of p21Cip1, whereas activation of deltaA-Raf:ER did not. A catalytically potentiated form of deltaA-Raf:ER, generated by point mutation, strongly induced p21Cip1 expression and elicited cell cycle arrest similarly to deltaB-Raf:ER and deltaRaf-1:ER. These data suggested that the strength and duration of signaling by Raf kinases might influence the biological outcome of activation of this pathway. By titration of deltaB-Raf:ER activity we demonstrated that low levels of Raf activity led to activation of cyclin D1-cdk4 and cyclin E-cdk2 complexes and to cell cycle progression whereas higher Raf activity elicited cell cycle arrest correlating with p21Cip1 induction and inhibition of cyclin-cdk activity. Using green fluorescent protein-tagged forms of deltaRaf-1:ER in primary mouse embryo fibroblasts (MEFs) we demonstrated that p21Cip1 was induced by Raf in a p53-independent manner, leading to cell cycle arrest. By contrast, activation of Raf in p21Cip1(-/-) MEFs led to a robust mitogenic response that was similar to that observed in response to platelet-derived growth factor. These data indicate that, depending on the level of kinase activity, Raf can elicit either cell cycle progression or cell cycle arrest in mouse fibroblasts. The ability of Raf to elicit cell cycle arrest is strongly associated with its ability to induce the expression of the cyclin-dependent kinase inhibitor p21Cip1 in a manner that bears analogy to alpha-factor arrest in Saccharomyces cerevisiae. These data are consistent with a role for Raf kinases in both proliferation and differentiation of mammalian cells.


Nature | 2013

Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance

Meghna Das Thakur; Fernando Salangsang; Allison Landman; William R. Sellers; Nancy Pryer; Mitchell P. Levesque; Reinhard Dummer; Martin McMahon; Darrin Stuart

Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, with ≥50% of tumours expressing the BRAF(V600E) oncoprotein. Moreover, the marked tumour regression and improved survival of late-stage BRAF-mutated melanoma patients in response to treatment with vemurafenib demonstrates the essential role of oncogenic BRAF in melanoma maintenance. However, as most patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is critical to providing improved therapy. Here we investigate the cause and consequences of vemurafenib resistance using two independently derived primary human melanoma xenograft models in which drug resistance is selected by continuous vemurafenib administration. In one of these models, resistant tumours show continued dependency on BRAF(V600E)→MEK→ERK signalling owing to elevated BRAF(V600E) expression. Most importantly, we demonstrate that vemurafenib-resistant melanomas become drug dependent for their continued proliferation, such that cessation of drug administration leads to regression of established drug-resistant tumours. We further demonstrate that a discontinuous dosing strategy, which exploits the fitness disadvantage displayed by drug-resistant cells in the absence of the drug, forestalls the onset of lethal drug-resistant disease. These data highlight the concept that drug-resistant cells may also display drug dependency, such that altered dosing may prevent the emergence of lethal drug resistance. Such observations may contribute to sustaining the durability of the vemurafenib response with the ultimate goal of curative therapy for the subset of melanoma patients with BRAF mutations.


Molecular and Cellular Biology | 1998

Identification and Characterization of a Constitutively Active STAT5 Mutant That Promotes Cell Proliferation

Mayumi Onishi; Tetsuya Nosaka; Kazuhide Misawa; Alice L.‐F. Mui; Daniel Gorman; Martin McMahon; Atsushi Miyajima; Toshio Kitamura

ABSTRACT STAT (signal transducers and activators of transcription) proteins are transcription factors which are activated by phosphorylation on tyrosine residues upon stimulation by cytokines. Seven members of the STAT family are known, including the closely related STAT5A and STAT5B, which are activated by various cytokines. Except for prolactin-dependent β-casein production in mammary gland cells, the biological consequences of STAT5 activation in various systems are not clear. We applied PCR-driven random mutagenesis and a retrovirus-mediated expression screening system to identify constitutively active forms of STAT5. By this strategy, we have identified a constitutively active STAT5 mutant which has two amino acid substitutions; one is located upstream of the putative DNA binding domain (H299R), and the other is located in the transactivation domain (S711F). The mutant STAT5 was constitutively phosphorylated on tyrosine residues, localized in the nucleus, and was transcriptionally active. Expression of the mutant STAT5 partially dispenses with interleukin 3 (IL-3) as a growth stimulant of IL-3-dependent cell lines. Further analyses of the mutant STAT5 have demonstrated that both of the mutations are required for nuclear localization, efficient transcriptional activation, and induction of IL-3-independent growth of an IL-3-dependent cell line, Ba/F3, and have indicated that a molecular basis for the constitutive activation is the stability of the phosphorylated form of the mutant STAT5.


Cell | 2000

Opposing Effects of Ras on p53: Transcriptional Activation of mdm2 and Induction of p19ARF

Stefan Ries; Carola H. Biederer; Douglas Woods; Ohad Shifman; Senji Shirasawa; Takehiko Sasazuki; Martin McMahon; Moshe Oren; Frank McCormick

Mdm2 acts as a major regulator of the tumor suppressor p53 by targeting its destruction. Here, we show that the mdm2 gene is also regulated by the Ras-driven Raf/MEK/MAP kinase pathway, in a p53-independent manner. Mdm2 induced by activated Raf degrades p53 in the absence of the Mdm2 inhibitor p19ARF. This regulatory pathway accounts for the observation that cells transformed by oncogenic Ras are more resistant to p53-dependent apoptosis following exposure to DNA damage. Activation of the Ras-induced Raf/MEK/MAP kinase may therefore play a key role in suppressing p53 during tumor development and treatment. In primary cells, Raf also activates the Mdm2 inhibitor p19ARF. Levels of p53 are therefore determined by opposing effects of Raf-induced p19ARF and Mdm2.


Nature Reviews Cancer | 2014

Targeting RAF kinases for cancer therapy: BRAF mutated melanoma and beyond

Matthew Holderfield; Marian M. Deuker; Frank McCormick; Martin McMahon

The identification of mutationally activated BRAF in many cancers altered our conception of the part played by the RAF family of protein kinases in oncogenesis. In this Review, we describe the development of BRAF inhibitors and the results that have emerged from their analysis in both the laboratory and the clinic. We discuss the spectrum of RAF mutations in human cancer and the complex interplay between the tissue of origin and the response to RAF inhibition. Finally, we enumerate mechanisms of resistance to BRAF inhibition that have been characterized and postulate how strategies of RAF pathway inhibition may be extended in scope to benefit not only the thousands of patients who are diagnosed annually with BRAF-mutated metastatic melanoma but also the larger patient population with malignancies harbouring mutationally activated RAF genes that are ineffectively treated with the current generation of BRAF kinase inhibitors.


Nature | 2012

An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background

Devarati Mitra; Xi Luo; Ann M. Morgan; Jin Wang; Mai P. Hoang; Jennifer Lo; Candace R. Guerrero; Jochen K. Lennerz; Martin C. Mihm; Jennifer A. Wargo; Kathleen C. Robinson; Suprabha P. Devi; Jillian C. Vanover; John A. D'Orazio; Martin McMahon; Marcus Bosenberg; Kevin M. Haigis; Daniel A. Haber; Yinsheng Wang; David E. Fisher

People with pale skin, red hair, freckles and an inability to tan—the ‘red hair/fair skin’ phenotype—are at highest risk of developing melanoma, compared to all other pigmentation types. Genetically, this phenotype is frequently the product of inactivating polymorphisms in the melanocortin 1 receptor (MC1R) gene. MC1R encodes a cyclic AMP-stimulating G-protein-coupled receptor that controls pigment production. Minimal receptor activity, as in red hair/fair skin polymorphisms, produces the red/yellow pheomelanin pigment, whereas increasing MC1R activity stimulates the production of black/brown eumelanin. Pheomelanin has weak shielding capacity against ultraviolet radiation relative to eumelanin, and has been shown to amplify ultraviolet-A-induced reactive oxygen species. Several observations, however, complicate the assumption that melanoma risk is completely ultraviolet-radiation-dependent. For example, unlike non-melanoma skin cancers, melanoma is not restricted to sun-exposed skin and ultraviolet radiation signature mutations are infrequently oncogenic drivers. Although linkage of melanoma risk to ultraviolet radiation exposure is beyond doubt, ultraviolet-radiation-independent events are likely to have a significant role. Here we introduce a conditional, melanocyte-targeted allele of the most common melanoma oncoprotein, BRAFV600E, into mice carrying an inactivating mutation in the Mc1r gene (these mice have a phenotype analogous to red hair/fair skin humans). We observed a high incidence of invasive melanomas without providing additional gene aberrations or ultraviolet radiation exposure. To investigate the mechanism of ultraviolet-radiation-independent carcinogenesis, we introduced an albino allele, which ablates all pigment production on the Mc1re/e background. Selective absence of pheomelanin synthesis was protective against melanoma development. In addition, normal Mc1re/e mouse skin was found to have significantly greater oxidative DNA and lipid damage than albino-Mc1re/e mouse skin. These data suggest that the pheomelanin pigment pathway produces ultraviolet-radiation-independent carcinogenic contributions to melanomagenesis by a mechanism of oxidative damage. Although protection from ultraviolet radiation remains important, additional strategies may be required for optimal melanoma prevention.


Genes & Development | 2012

Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis

Liesbeth C.W. Vredeveld; Patricia A. Possik; Marjon A. Smit; Katrin Meissl; Chrysiis Michaloglou; Hugo M. Horlings; Abderrahim Ajouaou; Pim C. Kortman; David Dankort; Martin McMahon; Wolter J. Mooi; Daniel S. Peeper

Human melanocytic nevi (moles) are benign lesions harboring activated oncogenes, including BRAF. Although this oncogene initially acts mitogenically, eventually, oncogene-induced senescence (OIS) ensues. Nevi can infrequently progress to melanomas, but the mechanistic relationship with OIS is unclear. We show here that PTEN depletion abrogates BRAF(V600E)-induced senescence in human fibroblasts and melanocytes. Correspondingly, in established murine BRAF(V600E)-driven nevi, acute shRNA-mediated depletion of PTEN prompted tumor progression. Furthermore, genetic analysis of laser-guided microdissected human contiguous nevus-melanoma specimens recurrently revealed identical mutations in BRAF or NRAS in adjacent benign and malignant melanocytes. The PI3K pathway was often activated through either decreased PTEN or increased AKT3 expression in melanomas relative to their adjacent nevi. Pharmacologic PI3K inhibition in melanoma cells suppressed proliferation and induced the senescence-associated tumor suppressor p15(INK4B). This treatment also eliminated subpopulations resistant to targeted BRAF(V600E) inhibition. Our findings suggest that a significant proportion of melanomas arise from nevi. Furthermore, these results demonstrate that PI3K pathway activation serves as a rate-limiting event in this setting, acting at least in part by abrogating OIS. The reactivation of senescence features and elimination of cells refractory to BRAF(V600E) inhibition by PI3K inhibition warrants further investigation into the therapeutic potential of simultaneously targeting these pathways in melanoma.


Molecular and Cellular Biology | 1999

The Repertoire of Fos and Jun Proteins Expressed during the G1 Phase of the Cell Cycle Is Determined by the Duration of Mitogen-Activated Protein Kinase Activation

Simon J. Cook; Natasha Aziz; Martin McMahon

ABSTRACT In Rat-1 fibroblasts nonmitogenic doses of lysophosphatidic acid (LPA) stimulate a transient activation of mitogen-activated protein kinase (MAPK), whereas mitogenic doses elicit a sustained response. This sustained phase of MAPK activation regulates cell fate decisions such as proliferation or differentiation, presumably by inducing a program of gene expression which is not observed in response to transient MAPK activation. We have examined the expression of members of the AP-1 transcription factor complex in response to stimulation with different doses of LPA. c-Fos, c-Jun, and JunB are induced rapidly in response to LPA stimulation, whereas Fra-1 and Fra-2 are induced after a significant lag. The expression of c-Fos is transient, whereas the expression of c-Jun, JunB, Fra-1, and Fra-2 is sustained. The early expression of c-Fos can be reconstituted with nonmitogenic doses of LPA, but the response is transient compared to that observed with mitogenic doses. In contrast, expression of Fra-1, Fra-2, and JunB and optimal expression of c-Jun are observed only with doses of LPA which induce sustained MAPK activation and DNA synthesis. LPA-stimulated expression of c-Fos, Fra-1, Fra-2, c-Jun, and JunB is inhibited by the MEK1 inhibitor PD098059, indicating that the Raf-MEK-MAPK cascade is required for their expression. In cells expressing a conditionally active form of Raf-1 (ΔRaf-1:ER), we observed that selective, sustained activation of Raf-MEK-MAPK was sufficient to induce expression of Fra-1, Fra-2, and JunB but, interestingly, induced little or no c-Fos or c-Jun. The induction of c-Fos observed in response to LPA was strongly inhibited by buffering the intracellular [Ca2+]. Moreover, although Raf activation or calcium ionophores induced little c-Fos expression, we observed a synergistic induction in response to the combination of ΔRaf-1:ER and ionomycin. These results suggest that kinetically distinct phases of MAPK activation serve to regulate the expression of distinct AP-1 components such that sustained MAPK activation is required for the induced expression of Fra-1, Fra-2, c-Jun, and JunB. However, in contrast to the case for Fra-1, Fra-2, and JunB, activation of the MAPK cascade alone is not sufficient to induce c-Fos expression, which rather requires cooperation with other signals such as Ca2+mobilization. Finally, the identification of the Fra-1, Fra-2, c-Jun, and JunB genes as genes which are selectively regulated by sustained MAPK activation or in response to activated Raf suggests that they are candidates to mediate certain of the effects of Ras proteins in oncogenic transformation.

Collaboration


Dive into the Martin McMahon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne A. Phillips

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge