Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Merkel is active.

Publication


Featured researches published by Martin Merkel.


Nature Medicine | 2011

Brown adipose tissue activity controls triglyceride clearance

Alexander Bartelt; Oliver Bruns; Rudolph Reimer; Heinz Hohenberg; Harald Ittrich; Kersten Peldschus; Michael G. Kaul; Ulrich I. Tromsdorf; Horst Weller; Christian Waurisch; Alexander Eychmüller; Philip L.S.M. Gordts; Franz Rinninger; Karoline Bruegelmann; Barbara Freund; Peter Nielsen; Martin Merkel; Joerg Heeren

Brown adipose tissue (BAT) burns fatty acids for heat production to defend the body against cold and has recently been shown to be present in humans. Triglyceride-rich lipoproteins (TRLs) transport lipids in the bloodstream, where the fatty acid moieties are liberated by the action of lipoprotein lipase (LPL). Peripheral organs such as muscle and adipose tissue take up the fatty acids, whereas the remaining cholesterol-rich remnant particles are cleared by the liver. Elevated plasma triglyceride concentrations and prolonged circulation of cholesterol-rich remnants, especially in diabetic dyslipidemia, are risk factors for cardiovascular disease. However, the precise biological role of BAT for TRL clearance remains unclear. Here we show that increased BAT activity induced by short-term cold exposure controls TRL metabolism in mice. Cold exposure drastically accelerated plasma clearance of triglycerides as a result of increased uptake into BAT, a process crucially dependent on local LPL activity and transmembrane receptor CD36. In pathophysiological settings, cold exposure corrected hyperlipidemia and improved deleterious effects of insulin resistance. In conclusion, BAT activity controls vascular lipoprotein homeostasis by inducing a metabolic program that boosts TRL turnover and channels lipids into BAT. Activation of BAT might be a therapeutic approach to reduce elevated triglyceride concentrations and combat obesity in humans.


Nature Nanotechnology | 2009

Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals

Oliver T. Bruns; Harald Ittrich; Kersten Peldschus; Michael G. Kaul; Ulrich I. Tromsdorf; Joachim Lauterwasser; Marija S. Nikolic; Birgit Mollwitz; Martin Merkel; Nadja C. Bigall; Sameer Sapra; Rudolph Reimer; Heinz Hohenberg; Horst Weller; Alexander Eychmüller; Gerhard Adam; Ulrike Beisiegel; Joerg Heeren

Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins--micelles that transport lipids and other hydrophobic substances in the blood--and show that it is possible to image and quantify the kinetics of lipoprotein metabolism in vivo using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging.


Journal of Molecular Medicine | 2002

Endothelial-derived lipoprotein lipase is bound to postprandial triglyceride-rich lipoproteins and mediates their hepatic clearance in vivo.

Joerg Heeren; Andreas Niemeier; Martin Merkel; Ulrike Beisiegel

Abstract. Lipoprotein lipase (LPL) is the key enzyme in the intravascular hydrolysis of triglyceride-rich lipoproteins (TRL). Furthermore, it has been shown that inactive LPL can mediate cellular binding and uptake of TRL in vitro. This study investigated whether LPL is bound to postprandial human TRL in vivo, and whether it plays a role in the hepatic clearance of these particles independent of its catalytic activity. LPL was found to bind to postprandial TRL in preheparin plasma of healthy young men. To study the effect of inactive LPL on particle uptake, TRL isolated from patients with inactive LPL (LPL or apoC-II mutations) were used before and after heparin administration. These model particles allow one to study the bridging effect of LPL independent of its enzymatic activity. Organ uptake studies with these particles in mice revealed that inactive LPL increases the hepatic clearance of TRL significantly while uptake into other organs remains largely unaffected. Further evidence that endothelial-derived LPL directs TRL to the liver in vivo was gained with transgenic mice that express inactive LPL exclusively in muscle, revealing greater hepatic uptake than in wild-type mice. In conclusion, these data demonstrate for the first time that LPL is a structural component of postprandial TRL which facilitates hepatic TRL clearance from the circulation independent of its catalytic function.


Atherosclerosis | 2009

Insulin stimulates hepatic low density lipoprotein receptor-related protein 1 (LRP1) to increase postprandial lipoprotein clearance

Alexander Laatsch; Martin Merkel; Philippa J. Talmud; Thomas Grewal; Ulrike Beisiegel; Joerg Heeren

BACKGROUND While the role of insulin in glucose uptake and its aberration in diabetes are well established, the effect of insulin on lipoprotein clearance in the postprandial phase is not yet fully understood. The dietary lipids are carried in chylomicron remnants (CR) which are taken up into the liver mainly via LDLR-related protein 1 (LRP1). In this study, the effect of insulin on LRP1-mediated hepatic CR uptake was investigated. METHODS The study was based on determining the subcellular localisation of LRP1 by subcellular fractionation and immunofluorescence microscopy and correlating those findings with the hepatic uptake of fluorescently or radioactively labelled LRP1-specific ligands and CR in hepatoma cells, primary hepatocytes and mouse models. RESULTS AND CONCLUSION In vitro and in vivo, insulin stimulated the translocation of hepatic LRP1 from intracellular vesicles to the plasma membrane, which correlates with an increased uptake of LRP1-specific ligands. In wild-type mice, a glucose-induced insulin response increased the hepatic uptake of LRP1 ligands while in leptin-deficient obese mice (ob/ob), which are characterised by hepatic insulin resistance, insulin-inducible LRP1 ligand uptake was abolished. Finally, upon hepatic LRP1 knockdown, insulin no longer significantly enhanced CR uptake into the liver. The insulin-induced LRP1-mediated CR uptake, as demonstrated here, suggests that impaired hepatic LRP1 translocation can contribute to the postprandial lipaemia in insulin resistance.


Atherosclerosis | 2011

Apolipoprotein A-V; a potent triglyceride reducer

Stefan Nilsson; Joerg Heeren; Martin Merkel

Since its discovery, apolipoprotein A-V has been considered to be a potent factor affecting plasma triglycerides (TG) in humans and mice. Several single nucleotide polymorphisms in the APOA5 gene are associated with increased TG levels in humans, and some nonsense mutations affecting protein structure predispose for familial hypertriglyceridemia and late onset chylomicronemia. It is not clear, how apoA-V decreases plasma TG. There are three major hypotheses: apolipoprotein A-V could work through (1) an intracellular mechanism affecting VLDL production in the liver, (2) stimulation of proteoglycan-bound lipoprotein lipase at the endothelium of capillaries in peripheral organs, or (3) enhancing the clearance of TG-rich lipoproteins via lipoprotein receptors in the liver. There is good evidence for a role of apoA-V in extracellular TG metabolism and increasing support for an additional function of ApoA-V as a receptor ligand. The intracellular role of apoA-V for lipoprotein assembly and secretion is still speculative. This review discusses these possible mechanisms.


Bone | 2008

Uptake of postprandial lipoproteins into bone in vivo: Impact on osteoblast function

Andreas Niemeier; Dagmara Niedzielska; Arndt F. Schilling; Martin Merkel; Carlos Enrich; Patrick C. N. Rensen; Joerg Heeren

Dietary lipids and lipophilic vitamins are transported by postprandial lipoproteins and are required for bone metabolism. Despite that, it remains unknown whether bone cells are involved in the uptake of circulating postprandial lipoproteins in vivo. The current study was performed to investigate a putative participation of bone in the systemic postprandial lipoprotein metabolism in mice, to identify potentially involved cell type populations and to analyze whether lipoprotein uptake affects bone function in vivo. As a model for the postprandial state, chylomicron remnants (CR) were injected intravenously into mice. Next to the liver and compared to other organs, bone appeared to be the second most important organ for the clearance of radiolabeled CR particles from the circulation in vivo. In addition, uptake of radiolabeled CR by primary murine osteoblasts and hepatocytes was quantified to be in a similar range in vitro. A complementary approach with fluorescently labeled CR and immunohistochemical staining for apoE proved that intact CR particles were taken up into bone and liver. Electron microscopy localization studies of bone sections revealed CR uptake into sinusoidal endothelial cells, macrophages and osteoblasts. The relative amount of radiolabeled CR uptake into femoral cortical bone, representing predominantly osteoblasts, and bone marrow, representing predominantly non-osteoblast cells, was within the same range. Most importantly, the injection of vitamin K1-enriched CR resulted in an increase of the degree of osteocalcin carboxylation in vivo while total osteocalcin concentrations remained unaffected, giving functional proof that osteoblasts process CR in vivo. In conclusion, here we demonstrate that bone is involved in the postprandial lipoprotein metabolism in mice. Osteoblasts participate in CR clearance from the circulation, which has a direct impact on the secretory function of osteoblasts.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Effects of Six APOA5 Variants, Identified in Patients With Severe Hypertriglyceridemia, on In Vitro Lipoprotein Lipase Activity and Receptor Binding

B Dorfmeister; W W Zeng; A Dichlberger; Stefan Nilsson; F G Schaap; J A Hubacek; Martin Merkel; J A Cooper; Aivar Lookene; Wendy Putt; R Whittall; P J Lee; Laurence Lins; N Delsaux; M Nierman; J A Kuivenhoven; John J. P. Kastelein; M Vrablik; W J Schneider; Joerg Heeren; Steve E. Humphries; Philippa J. Talmud

Objective—The purpose of this study was to identify rare APOA5 variants in 130 severe hypertriglyceridemic patients by sequencing, and to test their functionality, since no patient recall was possible. Methods and Results—We studied the impact in vitro on LPL activity and receptor binding of 3 novel heterozygous variants, apoAV-E255G, -G271C, and -H321L, together with the previously reported -G185C, -Q139X, -Q148X, and a novel construct -&Dgr;139 to 147. Using VLDL as a TG-source, compared to wild type, apoAV-G255, -L321 and -C185 showed reduced LPL activation (−25% [P=0.005], −36% [P<0.0001], and −23% [P=0.02]), respectively). ApoAV-C271, -X139, -X148, and &Dgr;139 to 147 had little affect on LPL activity, but apoAV-X139, -X148, and -C271 showed no binding to LDL-family receptors, LR8 or LRP1. Although the G271C proband carried no LPL and APOC2 mutations, the H321L carrier was heterozygous for LPL P207L. The E255G carrier was homozygous for LPL W86G, yet only experienced severe hypertriglyceridemia when pregnant. Conclusion—The in vitro determined function of these apoAV variants only partly explains the high TG levels seen in carriers. Their occurrence in the homozygous state, coinheritance of LPL variants or common APOA5 TG-raising variant in trans, appears to be essential for their phenotypic expression.


Journal of Molecular Medicine | 2012

A new, powerful player in lipoprotein metabolism: brown adipose tissue

Alexander Bartelt; Martin Merkel; Joerg Heeren

Important causes for modern epidemics such as obesity, diabetes, and cardiovascular disease are over- and malnutrition. Dietary as well as endogenous lipids are transported through the bloodstream in lipoproteins, and disturbances in lipoprotein metabolism are associated with atherosclerosis, heart disease, and diabetes. Recent findings reveal biological principles—how lipoproteins, in particular triglyceride-rich lipoproteins, are metabolized and what factors regulate their processing. The fate of triglycerides delivered by lipoproteins is quite simple: either they can be stored or they can be utilized for combustion or biosynthetic pathways. In the healthy state, fatty acids derived from triglycerides can be burned in the heart, muscle, and other organs for actual work load, or they can be stored in white adipose tissue. The combination of storage and combustion is realized in brown adipose tissue (BAT), a peripheral organ that was long thought to be only of relevance in small mammals: Recent data however prove that BAT plays an important role in human adults. Here, we will review recent insights on how BAT controls triglyceride clearance and the possible implications for the treatment of chronic diseases caused by lipid mishandling.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Hepatic ATP-Binding Cassette Transporter A1 Is a Key Molecule in High-Density Lipoprotein Cholesteryl Ester Metabolism in Mice

Roshni R. Singaraja; Bjorn Stahmer; May Brundert; Martin Merkel; Joerg Heeren; Nagat Bissada; Martin H. Kang; Jenelle M. Timmins; Rajasekhar Ramakrishnan; John S. Parks; Michael R. Hayden; Franz Rinninger

Objective—Mutations in ATP-binding cassette transporter A1 (ABCA1), the cellular lipid transport molecule mutated in Tangier disease, result in the rapid turnover of high-density lipoprotein (HDL)–associated apolipoproteins that presumably are cleared by the kidneys. However, the role of ABCA1 in the liver for HDL apolipoprotein and cholesteryl ester (CE) catabolism in vivo is unknown. Methods and Results—Murine HDL was radiolabeled with 125I in its apolipoprotein and with [3H]cholesteryl oleyl ether in its CE moiety. HDL protein and lipid metabolism in plasma and HDL uptake by tissues were investigated in ABCA1-overexpressing bacterial artificial chromosome (BAC)–transgenic (BAC+) mice and in mice harboring deletions of total (ABCA1−/−) and liver-specific ABCA1 (ABCA1−L/−L). In BAC+ mice with elevated ABCA1 expression, fractional catabolic rates (FCRs) of both the protein and the lipid tracer were significantly decreased in plasma and in the liver, yielding a diminished hepatic selective CE uptake from HDL. In contrast, ABCA1−/− or ABCA1−L/−L mice had significantly increased plasma and liver FCRs for both HDL tracers. An ABCA1 deficiency was associated with increased selective HDL CE uptake by the liver under all experimental conditions. Conclusions—Hepatic ABCA1 has a critical role for HDL catabolism in plasma and for HDL selective CE uptake by the liver.


Journal of Inherited Metabolic Disease | 2005

Decreased plasma concentration of von Willebrand factor antigen (VWF:Ag) in patients with glycogen storage disease type Ia.

Chris Mühlhausen; R. Schneppenheim; U. Budde; Martin Merkel; Nicole Muschol; K. Ullrich; René Santer

SummaryDespite highly increased blood lipids, patients with glycogen storage disease type Ia (GSD Ia) do not develop premature vascular complications. Since this could be due to changes of coagulation factors, coagulation tests (including von Willebrand factor (VWF) antigen (VWF:Ag) ELISA, VWF:collagen binding activity (VWF:CB) and VWF multimer analysis) were performed in 10 GSD Ia patients, single cases of other GSD types, and in both healthy and hyperlipidaemic controls. In 60% of GSD Ia patients we found abnormal results, with a decrease of VWF:Ag and multimer analysis showing reduced intensity of individual oligomers in the presence of all multimers with a normal triplet structure. We interpret these findings as an aquired ‘von Willebrand syndrome type I’ in GSD Ia. The underlying metabolic mechanism and a potential role in the protection from vascular complication still needs to be evaluated.

Collaboration


Dive into the Martin Merkel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Eychmüller

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge