Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Moche is active.

Publication


Featured researches published by Martin Moche.


Journal of Biological Chemistry | 1999

STRUCTURE OF THE COMPLEX BETWEEN THE ANTIBIOTIC CERULENIN AND ITS TARGET, BETA -KETOACYL-ACYL CARRIER PROTEIN SYNTHASE

Martin Moche; Gunter Schneider; Patricia Edwards; Katayoon Dehesh; Ylva Lindqvist

In the biosynthesis of fatty acids, the β-ketoacyl-acyl carrier protein (ACP) synthases catalyze chain elongation by the addition of two-carbon units derived from malonyl-ACP to an acyl group bound to either ACP or CoA. The enzyme is a possible drug target for treatment of certain cancers and for tuberculosis. The crystal structure of the complex of the enzyme from Escherichia coli, and the fungal mycotoxin cerulenin reveals that the inhibitor is bound in a hydrophobic pocket formed at the dimer interface. Cerulenin is covalently attached to the active site cysteine through its C2 carbon atom. The fit of the inhibitor to the active site is not optimal, and there is thus room for improvement through structure based design.


PLOS ONE | 2010

Comparative Structural Analysis of Human DEAD-Box RNA Helicases.

P. Schutz; Tobias Karlberg; Susanne van den Berg; R. Collins; Lari Lehtiö; M. Hogbom; Lovisa Holmberg-Schiavone; Wolfram Tempel; Hee-Won Park; Martin Hammarström; Martin Moche; Ann-Gerd Thorsell; Herwig Schüler

DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Remote control of regioselectivity in acyl-acyl carrier protein-desaturases

Jodie E. Guy; Edward Whittle; Martin Moche; Johan Lengqvist; Ylva Lindqvist; John Shanklin

Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals.


Nature Structural & Molecular Biology | 2013

High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation.

Madhanagopal Anandapadamanaban; Cecilia Andrésen; Sara Helander; Yoshifumi Ohyama; Marina I Siponen; Patrik Lundström; Tetsuro Kokubo; Mitsuhiko Ikura; Martin Moche; Maria Sunnerhagen

The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBPs concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A single mutation in the castor Δ9-18:0-desaturase changes reaction partitioning from desaturation to oxidase chemistry

Jodie E. Guy; Isabel A. Abreu; Martin Moche; Ylva Lindqvist; Edward Whittle; John Shanklin

Sequence analysis of the diiron cluster-containing soluble desaturases suggests they are unrelated to other diiron enzymes; however, structural alignment of the core four-helix bundle of desaturases to other diiron enzymes reveals a conserved iron binding motif with similar spacing in all enzymes of this structural class, implying a common evolutionary ancestry. Detailed structural comparison of the castor desaturase with that of a peroxidase, rubrerythrin, shows remarkable conservation of both identity and geometry of residues surrounding the diiron center, with the exception of residue 199. Position 199 is occupied by a threonine in the castor desaturase, but the equivalent position in rubrerythrin contains a glutamic acid. We previously hypothesized that a carboxylate in this location facilitates oxidase chemistry in rubrerythrin by the close apposition of a residue capable of facilitating proton transfer to the activated oxygen (in a hydrophobic cavity adjacent to the diiron center based on the crystal structure of the oxygen-binding mimic azide). Here we report that desaturase mutant T199D binds substrate but its desaturase activity decreases by ≈2 × 103-fold. However, it shows a >31-fold increase in peroxide-dependent oxidase activity with respect to WT desaturase, as monitored by single-turnover stopped-flow spectrometry. A 2.65-Å crystal structure of T199D reveals active-site geometry remarkably similar to that of rubrerythrin, consistent with its enhanced function as an oxidase enzyme. That a single amino acid substitution can switch reactivity from desaturation to oxidation provides experimental support for the hypothesis that the desaturase evolved from an ancestral oxidase enzyme.


Journal of Medicinal Chemistry | 2017

Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.

Ann Gerd Thorsell; Torun Ekblad; Tobias Karlberg; Mirjam Löw; Ana Filipa Pinto; Lionel Trésaugues; Martin Moche; Michael S. Cohen; Herwig Schüler

Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.


Proteins | 2008

The crystal structure of human cleavage and polyadenylation specific factor-5 reveals a dimeric Nudix protein with a conserved catalytic site.

Lionel Trésaugues; Pål Stenmark; Herwig Schüler; Susanne Flodin; Martin Welin; Tomas Nyman; Martin Hammarström; Martin Moche; Susanne Gräslund; Pär Nordlund

The crystal structure of human cleavage and polyadenylation specific factor-5 reveals a dimeric Nudix protein with a conserved catalytic site Lionel Tresaugues,1y Pal Stenmark,1,2y Herwig Schuler,1y Susanne Flodin, Martin Welin, Tomas Nyman, Martin Hammarstrom, Martin Moche, Susanne Graslund, and Par Nordlund* 1Department of Medical Biochemistry and Biophysics, Structural Genomics Consortium, Karolinska Institute, Stockholm, Sweden 2Department of Molecular Biology, The Scripps Research Institute, La Jolla, California


Plant Physiology | 2015

Half-of-the-Sites Reactivity of the Castor Δ9-18:0-Acyl Carrier Protein Desaturase

Qin Liu; Jin Chai; Martin Moche; Jodie E. Guy; Ylva Lindqvist; John Shanklin

Heterodimers of a wild-type soluble lipid desaturase and a substrate-binding mutant demonstrate a reactivity that contrasts with membrane desaturases which require two active subunits. Fatty acid desaturases regulate the unsaturation status of cellular lipids. They comprise two distinct evolutionary lineages, a soluble class found in the plastids of higher plants and an integral membrane class found in plants, yeast (Saccharomyces cerevisiae), animals, and bacteria. Both classes exhibit a dimeric quaternary structure. Here, we test the functional significance of dimeric organization of the soluble castor Δ9-18:0-acyl carrier protein desaturase, specifically, the hypothesis that the enzyme uses an alternating subunit half-of-the-sites reactivity mechanism whereby substrate binding to one subunit is coordinated with product release from the other subunit. Using a fluorescence resonance energy transfer assay, we demonstrated that dimers stably associate at concentrations typical of desaturase assays. An active site mutant T104K/S202E, designed to occlude the substrate binding cavity, was expressed, purified, and its properties validated by x-ray crystallography, size exclusion chromatography, and activity assay. Heterodimers comprising distinctly tagged wild-type and inactive mutant subunits were purified at 1:1 stoichiometry. Despite having only one-half the number of active sites, purified heterodimers exhibit equivalent activity to wild-type homodimers, consistent with half-of-the-sites reactivity. However, because multiple rounds of turnover were observed, we conclude that substrate binding to one subunit is not required to facilitate product release from the second subunit. The observed half-of-the-sites reactivity could potentially buffer desaturase activity from oxidative inactivation. That soluble desaturases require only one active subunit per dimer for full activity represents a mechanistic difference from the membrane class of desaturases such as the Δ9-acyl-CoA, Ole1p, from yeast, which requires two catalytically competent subunits for activity.


Scientific Reports | 2017

Combined x-ray crystallography and computational modeling approach to investigate the Hsp90 C-terminal peptide binding to FKBP51

Rajnish Kumar; Martin Moche; Bengt Winblad; Pavel F. Pavlov

FK506 binding protein of 51 kDa (FKBP51) is a heat shock protein 90 (Hsp90) co-chaperone involved in the regulation of steroid hormone receptors activity. It is known for its role in various regulatory pathways implicated in mood and stress-related disorders, cancer, obesity, Alzheimer’s disease and corticosteroid resistant asthma. It consists of two FKBP12 like active peptidyl prolyl isomerase (PPIase) domains (an active FK1 and inactive FK2 domain) and one tetratricopeptide repeat (TPR) domain that mediates interaction with Hsp90 via its C-terminal MEEVD peptide. Here, we report a combined x-ray crystallography and molecular dynamics study to reveal the binding mechanism of Hsp90 MEEVD peptide to the TPR domain of FKBP51. The results demonstrated that the Hsp90 C-terminal peptide binds to the TPR domain of FKBP51 with the help of di-carboxylate clamp involving Lys272, Glu273, Lys352, Asn322, and Lys329 which are conserved throughout several di-carboxylate clamp TPR proteins. Interestingly, the results from molecular dynamics study are also in agreement to the complex structure where all the contacts between these two partners were consistent throughout the simulation period. In a nutshell, our findings provide new opportunity to engage this important protein-protein interaction target by small molecules designed by structure based drug design strategy.


PLOS ONE | 2010

Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78

Magdalena Wisniewska; Tobias Karlberg; Lari Lehtiö; Ida Johansson; T. Kotenyova; Martin Moche; Herwig Schüler

Collaboration


Dive into the Martin Moche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Hammarstrom

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge