Martin P. J. Lavery
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin P. J. Lavery.
Advances in Optics and Photonics | 2015
Alan E. Willner; Hao Huang; Yan Yan; Yongxiong Ren; Nisar Ahmed; Guodong Xie; Changjing Bao; Long Li; Yinwen Cao; Zhe Zhao; Jian Wang; Martin P. J. Lavery; Moshe Tur; Andreas F. Molisch; Nima Ashrafi; Solyman Ashrafi
Orbital angular momentum (OAM), which describes the “phase twist” (helical phase pattern) of light beams, has recently gained interest due to its potential applications in many diverse areas. Particularly promising is the use of OAM for optical communications since: (i) coaxially propagating OAM beams with different azimuthal OAM states are mutually orthogonal, (ii) inter-beam crosstalk can be minimized, and (iii) the beams can be efficiently multiplexed and demultiplexed. As a result, multiple OAM states could be used as different carriers for multiplexing and transmitting multiple data streams, thereby potentially increasing the system capacity. In this paper, we review recent progress in OAM beam generation/detection, multiplexing/demultiplexing, and its potential applications in different scenarios including free-space optical communications, fiber-optic communications, and RF communications. Technical challenges and perspectives of OAM beams are also discussed.
Science | 2013
Martin P. J. Lavery; F. C. Speirits; Stephen M. Barnett; Miles J. Padgett
Doppler Effect with a Twist The Doppler shift is a familiar and well-understood effect in acoustics. Radar guns use the same effect to determine the speed of moving vehicles. Applied to a rotating object side-on, however, a linear Doppler effect would register no movement. Using twisted light, whereby photons are imprinted with a given amount of optical angular momentum, Lavery et al. (p. 537; see the Perspective by Marrucci) detected rotation with an analogous angular Doppler shift, which may be useful for remote sensing and observational astronomy. Orbital angular momentum modes of light can be used to detect rotation. [Also see Perspective by Marrucci] The linear Doppler shift is widely used to infer the velocity of approaching objects, but this shift does not detect rotation. By analyzing the orbital angular momentum of the light scattered from a spinning object, we observed a frequency shift proportional to product of the rotation frequency of the object and the orbital angular momentum of the light. This rotational frequency shift was still present when the angular momentum vector was parallel to the observation direction. The multiplicative enhancement of the frequency shift may have applications for the remote detection of rotating bodies in both terrestrial and astronomical settings.
Optics Letters | 2014
Hao Huang; Guodong Xie; Yan Yan; Nisar Ahmed; Yongxiong Ren; Yang Yue; Dvora Rogawski; Moshe Willner; Baris I. Erkmen; Kevin Birnbaum; Samuel Dolinar; Martin P. J. Lavery; Miles J. Padgett; Moshe Tur; Alan E. Willner
We investigate the orthogonality of orbital angular momentum (OAM) with other multiplexing domains and present a free-space data link that uniquely combines OAM-, polarization-, and wavelength-division multiplexing. Specifically, we demonstrate the multiplexing/demultiplexing of 1008 data channels carried on 12 OAM beams, 2 polarizations, and 42 wavelengths. Each channel is encoded with 100 Gbit/s quadrature phase-shift keying data, providing an aggregate capacity of 100.8 Tbit/s (12×2×42×100 Gbit/s).
New Journal of Physics | 2015
Mohammad Mirhosseini; Omar S. Magaña-Loaiza; Malcolm N. O’Sullivan; Brandon Rodenburg; Mehul Malik; Martin P. J. Lavery; Miles J. Padgett; Daniel J. Gauthier; Robert W. Boyd
Quantum key distribution (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error rates that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a seven-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment demonstrates that, in addition to having an increased information capacity, multilevel QKD systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks.
Optics Letters | 2015
Giovanni Milione; Martin P. J. Lavery; Hao Huang; Yongxiong Ren; Guodong Xie; Thien An Nguyen; Ebrahim Karimi; Lorenzo Marrucci; Daniel A. Nolan; R. R. Alfano; Alan E. Willner
Vector modes are spatial modes that have spatially inhomogeneous states of polarization, such as, radial and azimuthal polarization. In this work, the spatially inhomogeneous states of polarization of vector modes are used to increase the transmission data rate of free-space optical communication via mode division multiplexing. A mode (de)multiplexer for vector modes based on a liquid crystal q-plate is introduced. As a proof of principle, four vector modes each carrying a 20-Gbit/s quadrature phase shift keying signal (aggregate 80 Gbit/s) on a single wavelength channel (λ∼1550 nm) were transmitted ∼1 m over the lab table with <-16.4 dB mode crosstalk. Bit error rates for all vector modes were measured at the 7% forward error correction threshold with power penalties <3.41 dB.
Scientific Reports | 2015
Hao Huang; Giovanni Milione; Martin P. J. Lavery; Guodong Xie; Yongxiong Ren; Yinwen Cao; Nisar Ahmed; Thien An Nguyen; Daniel A. Nolan; Ming-Jun Li; Moshe Tur; R. R. Alfano; Alan E. Willner
Mode division multiplexing (MDM)– using a multimode optical fiber’s N spatial modes as data channels to transmit N independent data streams – has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting’s 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than −15 dB mode selectivity and without cascaded beam splitting’s 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM−1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10−3.
Optics Express | 2012
Martin P. J. Lavery; David J. Robertson; Gregorius C. G. Berkhout; Gordon D. Love; Miles J. Padgett; Johannes Courtial
We have developed a mode transformer comprising two custom refractive optical elements which convert orbital angular momentum states into transverse momentum states. This transformation allows for an efficient measurement of the orbital angular momentum content of an input light beam. We characterise the channel capacity of the system for 50 input modes, giving a maximum value of 3.46 bits per photon. Using an electron multiplying CCD (EMCCD) camera with a laser source attenuated such that on average there is less than one photon present within the system per measurement period, we demonstrate that the elements are efficient for the use in single photon experiments.
Optics Express | 2012
Mehul Malik; Malcolm N. O’Sullivan; Brandon Rodenburg; Mohammad Mirhosseini; Jonathan Leach; Martin P. J. Lavery; Miles J. Padgett; Robert W. Boyd
We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-phase turbulence on the OAM channel capacity are quantified. We find that increasing the turbulence leads to a degradation of the channel capacity. We are able to mitigate the effects of turbulence by increasing the spacing between detected OAM modes. This study has implications for high-dimensional quantum key distribution (QKD) systems. We describe the sort of QKD system that could be built using our current technology.
Optics Letters | 2012
Brandon Rodenburg; Martin P. J. Lavery; Mehul Malik; Malcolm N. O’Sullivan; Mohammad Mirhosseini; David J. Robertson; Miles J. Padgett; Robert W. Boyd
We have experimentally studied the degradation of mode purity for light beams carrying orbital angular momentum (OAM) propagating through simulated atmospheric turbulence. The turbulence is modeled as a randomly varying phase aberration, which obeys statistics postulated by Kolmogorov turbulence theory. We introduce this simulated turbulence through the use of a phase-only spatial light modulator. Once the turbulence is introduced, the degradation in mode quality results in crosstalk between OAM modes. We study this crosstalk in OAM for 11 modes, showing that turbulence uniformly degrades the purity of all the modes within this range, irrespective of mode number.
New Journal of Physics | 2015
Miles J. Padgett; Filippo M. Miatto; Martin P. J. Lavery; Anton Zeilinger; Robert W. Boyd
There is recent interest in the use of light beams carrying orbital angular momentum (OAM) for creating multiple channels within free-space optical communication systems. One crucial issue is that, for a given beam size at the transmitter, the beam divergence angle increases with increasing OAM. Therefore the larger the value of OAM, the larger the aperture required at the receiving optical system if the efficiency of detection is to be maintained. Confusion exists as to whether this divergence scales linearly with, or with the square root of, the beams OAM. We clarify how both these scaling laws are valid, depending upon whether it is the radius of the waist of the beams Gaussian term or the radius of rms intensity of the beam that is kept constant while varying the OAM.