Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Pelletier is active.

Publication


Featured researches published by Martin Pelletier.


Journal of Experimental Medicine | 2011

Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS)

Ariel C. Bulua; Anna Katharina Simon; Ravikanth Maddipati; Martin Pelletier; Heiyoung Park; Kye-Young Kim; Michael N. Sack; Daniel L. Kastner; Richard M. Siegel

ROS generated by mitochondrial respiration are needed for optimal proinflammatory cytokine production in healthy cells, and are elevated in cells from patients with an autoinflammatory disorder.


Blood | 2010

Evidence for a cross-talk between human neutrophils and Th17 cells

Martin Pelletier; Laura Maggi; Alessandra Micheletti; Elena Lazzeri; Nicola Tamassia; Claudio Costantini; Lorenzo Cosmi; Claudio Lunardi; Francesco Annunziato; Sergio Romagnani; Marco A. Cassatella

Interleukin-17A (IL-17A) and IL-17F are 2 of several cytokines produced by T helper 17 cells (Th17), which are able to indirectly induce the recruitment of neutrophils. Recently, human Th17 cells have been phenotypically characterized and shown to express discrete chemokine receptors, including CCR2 and CCR6. Herein, we show that highly purified neutrophils cultured with interferon-gamma plus lipopolysaccharide produce the CCL2 and CCL20 chemokines, the known ligands of CCR2 and CCR6, respectively. Accordingly, supernatants from activated neutrophils induced chemotaxis of Th17 cells, which was greatly suppressed by anti-CCL20 and anti-CCL2 antibodies. We also discovered that activated Th17 cells could directly chemoattract neutrophils via the release of biologically active CXCL8. Consistent with this reciprocal recruitment, neutrophils and Th17 cells were found in gut tissue from Crohn disease and synovial fluid from rheumatoid arthritis patients. Finally, we report that, although human Th17 cells can directly interact with freshly isolated or preactivated neutrophils via granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha, and interferon-gamma release, these latter cells cannot be activated by IL-17A and IL-17F, because of their lack of IL-17RC expression. Collectively, our results reveal a novel chemokine-dependent reciprocal cross-talk between neutrophils and Th17 cells, which may represent a useful target for the treatment of chronic inflammatory diseases.


Journal of Clinical Investigation | 2015

Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

Anja Brehm; Yin Liu; Afzal Sheikh; Bernadette Marrero; Ebun Omoyinmi; Qing Zhou; Gina Montealegre; Angélique Biancotto; Adam Reinhardt; Adriana A. Jesus; Martin Pelletier; Wanxia L. Tsai; Elaine F. Remmers; Lela Kardava; Suvimol Hill; Hanna Kim; Helen J. Lachmann; André Mégarbané; Jae Jin Chae; Jilian Brady; Rhina D. Castillo; Diane Brown; Angel Vera Casano; Ling Gao; Dawn Chapelle; Yan Huang; Deborah L. Stone; Yongqing Chen; Franziska Sotzny; Chyi-Chia Richard Lee

Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production.


Blood | 2011

Human neutrophils interact with both 6-sulfo LacNAc + DC and NK cells to amplify NK-derived IFNγ: role of CD18, ICAM-1, and ICAM-3

Claudio Costantini; Federica Calzetti; Omar Perbellini; Alessandra Micheletti; Claudia Scarponi; Silvia Lonardi; Martin Pelletier; Knut Schäkel; Giovanni Pizzolo; Fabio Facchetti; William Vermi; Cristina Albanesi; Marco A. Cassatella

The role of neutrophils as key players in the regulation of innate and adaptive immune responses is increasingly being recognized. We report that human neutrophils establish a network with both natural killer (NK) cells and 6-sulfo LacNAc(+) dendritic cells (slanDCs), which ultimately serves to up-regulate NK-derived interferonγ (IFNγ). This network involves direct reciprocal interactions and positive amplification loops mediated by cell-derived cytokines. Accordingly, we show that after lipopolysaccharide + interleukin-2 (IL-2) or IL-15/IL-18 stimulation, neutrophils directly interact with and potentiate the activity of both slanDCs and NK cells. On the one hand, neutrophils augment the release of IL-12p70 by slanDCs via a CD18/ intercellular adhesion molecule-1 (ICAM-1) interaction that stimulates activated NK cells to produce IFNγ. IFNγ further potentiates the interaction between neutrophils and slanDCs and the release of slanDC-derived IL-12p70, thus creating a positive feedback loop. On the other hand, neutrophils directly co-stimulate NK cells via CD18/ICAM-3, leading to the production of IFNγ. Colocalization of neutrophils, NK cells, and slanDCs, as well as of IL-12p70 and IFNγ, in inflamed tissues of Crohn disease and psoriasis provides strong evidence for a novel cellular and cytokine cooperation within the innate immune system in which neutrophils act as amplifiers of NK cell/slanDC-mediated responses.


Mucosal Immunology | 2014

The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells

Françoise Meylan; Eric T. Hawley; Luke Barron; Jillian L. Barlow; Pallavi Penumetcha; Martin Pelletier; Giuseppe Sciumè; Arianne C. Richard; Erika T. Hayes; Julio Gomez-Rodriguez; Xi Chen; William E. Paul; Thomas A. Wynn; Andrew N. J. McKenzie; Richard M. Siegel

The tumor necrosis factor (TNF)-family cytokine TL1A (TNFSF15) costimulates T cells and promotes diverse T cell-dependent models of autoimmune disease through its receptor DR3. TL1A polymorphisms also confer susceptibility to inflammatory bowel disease. Here, we find that allergic pathology driven by constitutive TL1A expression depends on interleukin-13 (IL-13), but not on T, NKT, mast cells, or commensal intestinal flora. Group 2 innate lymphoid cells (ILC2) express surface DR3 and produce IL-13 and other type 2 cytokines in response to TL1A. DR3 is required for ILC2 expansion and function in the setting of T cell-dependent and -independent models of allergic disease. By contrast, DR3-deficient ILC2 can still differentiate, expand, and produce IL-13 when stimulated by IL-25 or IL-33, and mediate expulsion of intestinal helminths. These data identify costimulation of ILC2 as a novel function of TL1A important for allergic lung disease, and suggest that TL1A may be a therapeutic target in these settings.


Seminars in Immunology | 2012

New tricks from an old dog: mitochondrial redox signaling in cellular inflammation.

Martin Pelletier; Talya S. Lepow; Leah K. Billingham; Michael P. Murphy; Richard M. Siegel

Reactive oxygen species (ROS) such as superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) have long been implicated as pro-inflammatory, yet the sources of ROS and the molecular mechanisms by which they enhance inflammation have been less clear. Recent advances in the understanding of the molecular basis of inflammation mediated by the innate immune system have allowed these issues to be revisited. Although the Nox2 NADPH oxidases generate the bulk of ROS for antimicrobial host defense, recent studies have found that NADPH oxidase-dependent ROS production can actually dampen macrophage inflammatory responses to sterile pro-inflammatory stimuli. Instead, production of mitochondrial ROS has emerged as an important factor in both host defense and sterile inflammation. Excess mitochondrial ROS can be generated by either damage to the respiratory chain or by alterations of mitochondrial function such as those that increase membrane potential and reduce respiratory electron carriers. In autoinflammatory diseases, where key components of innate immune responses are activated by genetic mutations or environmental stimuli, inflammation has been found to be particularly sensitive to inhibition of mitochondrial ROS production. These findings have highlighted mitochondrial ROS as a novel generator of pro-inflammatory ROS and a potential therapeutic target in inflammatory diseases.


Journal of Immunology | 2015

The TNF-Family Ligand TL1A and Its Receptor DR3 Promote T Cell–Mediated Allergic Immunopathology by Enhancing Differentiation and Pathogenicity of IL-9–Producing T Cells

Arianne C. Richard; Cuiyan Tan; Eric T. Hawley; Julio Gomez-Rodriguez; Ritobrata Goswami; Xiang Ping Yang; Anthony C. Cruz; Pallavi Penumetcha; Erika T. Hayes; Martin Pelletier; Odile Gabay; Matthew C. Walsh; John R. Ferdinand; Andrea Keane-Myers; Yongwon Choi; John J. O'Shea; Aymen Al-Shamkhani; Mark H. Kaplan; Igal Gery; Richard M. Siegel; Françoise Meylan

The TNF family cytokine TL1A (Tnfsf15) costimulates T cells and type 2 innate lymphocytes (ILC2) through its receptor DR3 (Tnfrsf25). DR3-deficient mice have reduced T cell accumulation at the site of inflammation and reduced ILC2-dependent immune responses in a number of models of autoimmune and allergic diseases. In allergic lung disease models, immunopathology and local Th2 and ILC2 accumulation is reduced in DR3-deficient mice despite normal systemic priming of Th2 responses and generation of T cells secreting IL-13 and IL-4, prompting the question of whether TL1A promotes the development of other T cell subsets that secrete cytokines to drive allergic disease. In this study, we find that TL1A potently promotes generation of murine T cells producing IL-9 (Th9) by signaling through DR3 in a cell-intrinsic manner. TL1A enhances Th9 differentiation through an IL-2 and STAT5-dependent mechanism, unlike the TNF-family member OX40, which promotes Th9 through IL-4 and STAT6. Th9 differentiated in the presence of TL1A are more pathogenic, and endogenous TL1A signaling through DR3 on T cells is required for maximal pathology and IL-9 production in allergic lung inflammation. Taken together, these data identify TL1A–DR3 interactions as a novel pathway that promotes Th9 differentiation and pathogenicity. TL1A may be a potential therapeutic target in diseases dependent on IL-9.


Journal of Clinical Investigation | 2015

Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects

Javier Traba; Miriam Kwarteng-Siaw; Tracy C. Okoli; Jessica Li; Rebecca D. Huffstutler; Amanda Bray; Myron A. Waclawiw; Kim Han; Martin Pelletier; Anthony A. Sauve; Richard M. Siegel; Michael N. Sack

BACKGROUND Activation of the NLRP3 inflammasome is associated with metabolic dysfunction, and intermittent fasting has been shown to improve clinical presentation of NLRP3 inflammasome-linked diseases. As mitochondrial perturbations, which function as a damage-associated molecular pattern, exacerbate NLRP3 inflammasome activation, we investigated whether fasting blunts inflammasome activation via sirtuin-mediated augmentation of mitochondrial integrity. METHODS We performed a clinical study of 19 healthy volunteers. Each subject underwent a 24-hour fast and then was fed a fixed-calorie meal. Blood was drawn during the fasted and fed states and analyzed for NRLP3 inflammasome activation. We enrolled an additional group of 8 healthy volunteers to assess the effects of the sirtuin activator, nicotinamide riboside, on NLRP3 inflammasome activation. RESULTS In the fasting/refeeding study, individuals showed less NLRP3 inflammasome activation in the fasted state compared with that in refed conditions. In a human macrophage line, depletion of the mitochondrial-enriched sirtuin deacetylase SIRT3 increased NLRP3 inflammasome activation in association with excessive mitochondrial ROS production. Furthermore, genetic and pharmacologic SIRT3 activation blunted NLRP3 activity in parallel with enhanced mitochondrial function in cultured cells and in leukocytes extracted from healthy volunteers and from refed individuals but not in those collected during fasting. CONCLUSIONS Together, our data indicate that nutrient levels regulate the NLRP3 inflammasome, in part through SIRT3-mediated mitochondrial homeostatic control. Moreover, these results suggest that deacetylase-dependent inflammasome attenuation may be amenable to targeting in human disease. TRIAL REGISTRATION ClinicalTrials.gov NCT02122575 and NCT00442195. FUNDING Division of Intramural Research, NHLBI of the NIH.


Journal of Experimental Medicine | 2016

Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection

Christoph Wilhelm; Oliver J. Harrison; Vanessa Schmitt; Martin Pelletier; Sean P. Spencer; Joseph F. Urban; Michelle Ploch; Thirumalai R. Ramalingam; Richard M. Siegel; Yasmine Belkaid

Belkaid et al. show that type 2 innate lymphoid cells rely predominately on fatty acid metabolism during helminth infection and malnutrition.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease

Jevgenia Zilberman-Rudenko; Linda Monaco Shawver; Alex W. Wessel; Yongquan Luo; Martin Pelletier; Wanxia Li Tsai; Younglang Lee; Spiridon Vonortas; Laurence E. Cheng; Jonathan D. Ashwell; Jordan S. Orange; Richard M. Siegel; Eric P. Hanson

Significance Regulated activation of the NF-κB family of transcription factors is important for normal development, immune cell function, and inflammatory responses. NEMO, the NF-κB essential modulator, controls activation of the canonical IKK complex and NF-κB–mediated cellular responses, but details of how this is achieved are not fully known. Our results show that C-terminal mutations in NEMO can cause hyperactivation of inflammatory responses to Toll-like receptor and TNF ligands through impaired recruitment of the negative NF-κB regulator A20/TNFAIP3. Our results help to explain the inflammatory symptoms in patients harboring these NEMO mutations. Furthermore, our findings suggest that targeting this molecular interaction by enhancing A20 expression or its recruitment to the NEMO C-terminus may be a therapeutic strategy for human inflammatory disease. Receptor-induced NF-κB activation is controlled by NEMO, the NF-κB essential modulator. Hypomorphic NEMO mutations result in X-linked ectodermal dysplasia with anhidrosis and immunodeficiency, also referred to as NEMO syndrome. Here we describe a distinct group of patients with NEMO C-terminal deletion (ΔCT-NEMO) mutations. Individuals harboring these mutations develop inflammatory skin and intestinal disease in addition to ectodermal dysplasia with anhidrosis and immunodeficiency. Both primary cells from these patients, as well as reconstituted cell lines with this deletion, exhibited increased IκB kinase (IKK) activity and production of proinflammatory cytokines. Unlike previously described loss-of-function mutations, ΔCT-NEMO mutants promoted increased NF-κB activation in response to TNF and Toll-like receptor stimulation. Investigation of the underlying mechanisms revealed impaired interactions with A20, a negative regulator of NF-κB activation, leading to prolonged accumulation of K63-ubiquitinated RIP within the TNFR1 signaling complex. Recruitment of A20 to the C-terminal domain of NEMO represents a novel mechanism limiting NF-κB activation by NEMO, and its absence results in autoinflammatory disease.

Collaboration


Dive into the Martin Pelletier's collaboration.

Top Co-Authors

Avatar

Richard M. Siegel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel L. Kastner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Deborah L. Stone

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Qing Zhou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Angélique Biancotto

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ariel C. Bulua

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eric T. Hawley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Erika T. Hayes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Françoise Meylan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julio Gomez-Rodriguez

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge