Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Philpott is active.

Publication


Featured researches published by Martin Philpott.


Cancer Chemotherapy and Pharmacology | 1995

Induction of tumour necrosis factor-α by single and repeated doses of the antitumour agent 5,6-dimethylxanthenone-4-acetic acid

Martin Philpott; Bruce C. Baguley; Lai-Ming Ching

Abstract5,6-Dimethylxanthenone-4-acetic acid (DMXAA), a low-molecular-weight biological response modifier scheduled for clinical evaluation, induced synthesis of tumour necrosis factor-α (TNF-α) in serum of mice, with maximal activity being observed at 2–3 h after administration. At a dose of 27.5 mg/kg, DMXAA induced similar TNF-α concentrations as did flavone-8-acetic acid given at its maximum tolerated dose (MTD; 330 mg/kg), whereas 8-methylxanthenone-4-acetic acid, which has no antitumour activity, did not induce serum TNF-α at its MTD (440 mg/kg). The dependence of schedule on TNF-α induction was studied by giving DMXAA to mice in two doses of 27.5 mg/kg each separated by different intervals. An interval of 0 (i.e 55 mg/kg given in a single dose) produced a TNF-α concentration 9-fold that produced hy a single dose of 27.5 mg/kg. This dose, although higher than the MTD of 30 mg/kg, did not affect the health of mice at the time of assay (3 h). An interval of 1 day produced very low levels of serum TNF-α after the second injection. An interval of 3 days produced high levels of serum TNF-α after the second injection (9-fold that detected in mice receiving 27.5 mg/kg in a single dose) but no long-term toxicity, whereas an interval of 7 days produced an intermediate response. Thus, the first dose can either potentiate or suppress the TNF-α response to a second dose. Mice with advanced subcutaneous colon 38 tumours were treated either with a single dose of DMXAA (27.5 mg/kg) or with a divided dose (two doses of 27.5 mg/kg given 3 days apart). Both the cure rate and the tumour-growth delay were enhanced by the divided-dose schedule. The results are relevant to the design of clinical administration schedules of DMXAA and emphasise the importance of TNF-α induction in the antitumour response.


Annual Review of Nutrition | 2008

Nutrition and Mutagenesis

Lynnette R. Ferguson; Martin Philpott

Diet-related mutagenesis plays an etiologic role in chronic diseases, including cardiovascular disease and cancer. Many dietary mutagens are DNA reactive, leading to distinct spectra of base-pair substitution mutations and structural chromosome changes. Examples include aflatoxin B1, ochratoxin A, ptaquiloside, various pyrrolizidine alkaloids, heterocyclic amines including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, and polycyclic aromatic hydrocarbons such as benzo[a]pyrene. However, endogenously or exogenously formed reactive species, inhibitors of topoisomerase II enzymes (e.g., flavonoids), of DNA repair (e.g., caffeine), or of the mitotic spindle (possibly acrylamide), also cause mutations, including structural chromosome changes and copy number variants. Genomic instability also results from inadequate nutrient intake (e.g., folate and selenium). Antimutagens include vitamin C, carotenoids, chlorophyllin, dietary fibers, and plant polyphenols acting through various mechanisms. Polymorphisms in genes for nutrient uptake, metabolism, and excretion will affect dietary intake in determining individual risk of disease development. Human studies utilizing nutrigenomic/nutrigenetic technologies will be essential to quantifying and overcoming diet-related mutagenesis.


Current Cancer Drug Targets | 2007

Cancer prevention by dietary bioactive components that target the immune response.

Lynnette R. Ferguson; Martin Philpott

Dietary bioactive food components that interact with the immune response have considerable potential to reduce the risk of cancer. Reduction of chronic inflammation or its downstream consequences may represent a key mechanism that can be reduced through targeting signal transduction or through antioxidant effects. Major classes of macronutrients provide numerous examples, including amino acids such as glutamine or arginine, lipids such as the omega-3 polyunsaturated fatty acids, DHA or EPA, or novel carbohydrates such as various sources of beta-glucans. Vitamins such as C and E are commonly used as antioxidants, while zinc and selenium are minerals with a wide spectrum of impacts on the immune system. Some of the most potent immunomodulators are phytochemicals such as the polyphenols, EGCG or curcumin, or isothiocyanates such as PEITC. There is accumulating evidence for cancer prevention by probiotics and prebiotics, and these may also affect the immune response. Genomic approaches are becoming increasingly important in characterising potential mechanisms of cancer prevention, optimising the rational selection of dietary bioactive food components, or identifying humans with differing nutrient requirements for cancer protection.


European Journal of Cancer | 2001

The antitumour agent 5,6-dimethylxanthenone-4-acetic acid acts in vitro on human mononuclear cells as a co-stimulator with other inducers of tumour necrosis factor.

Martin Philpott; Lai-Ming Ching; Bruce C. Baguley

5,6-dimethylxanthenone-4-acetic acid (DMXAA), currently in phase I trials, demonstrates excellent activity against transplantable murine tumours with established vasculature. The induction of cytokines, particularly of tumour necrosis factor (TNF), appears to be critical to its action. We investigated TNF induction by DMXAA in cultured human peripheral blood leucocytes (HPBL). TNF was measured by an enzyme-linked immunosorbent assay after 8 h, and NF-kappaB induction by electrophoretic mobility shift assays (EMSA) after 2 h. DMXAA (800 microg/ml) had no effect alone on TNF production but augmented, by up to 4-fold, the ability of bacterial lipopolysaccharide (LPS) to induce TNF. Previously reported results showing TNF production by DMXAA alone were traced to the presence in an earlier batch of DMXAA of a small amount of LPS, the action of which could be blocked by polymyxin B. DMXAA stimulated TNF production by deacylated LPS, which alone had little effect. An antibody (MEM-18) to the CD14 receptor, while blocking the induction of TNF by LPS, enabled DMXAA to both synthesise TNF and induce NF-kappaB. The structurally related drug, flavone acetic acid (FAA), did not induce TNF or synergise with anti-CD14 antibody. DMXAA strongly augmented the ability of suboptimal concentrations of interleukin-1 (IL-1) (25 ng/ml), okadaic acid (OA) (20 ng/ml) and phorbol-12-myristate-13-acetate (PMA) (5 ng/ml) to induce TNF production, suggesting that it affects multiple pathways converging on NF-kappaB activation. Sodium salicylate, a drug reported to inhibit the beta-subunit of IkappaB kinase (IKK), appeared to competitively inhibit TNF production by DMXAA in the presence of anti-CD14 antibody. Taken together, the results indicate DMXAA acts in vitro on HPBL to co-stimulate TNF production by a wide variety of agents, and suggests that IKK is the target that mediates this action.


Inflammatory Bowel Diseases | 2009

Genetic analysis of MDR1 and inflammatory bowel disease reveals protective effect of heterozygous variants for ulcerative colitis

Claudia Huebner; Brian L. Browning; Ivonne Petermann; Dug Yeo Han; Martin Philpott; Murray L. Barclay; Richard B. Gearry; Alan McCulloch; Pieter Demmers; Lynnette R. Ferguson

Background: Single nucleotide polymorphisms (SNPs) in the multidrug transporter MDR1 have been associated with inflammatory bowel disease (IBD) in different studies. However, the data are highly controversial. Recently, 6 haplotype tagging SNPs (tSNPs), representing the haplotype variations of the MDR1 gene, were identified. The aims of this study were to genotype these variants and correlate them to disease phenotype in New Zealand IBD patients. Materials and Methods: A total of 784 IBD patients and 200 healthy subjects were genotyped for 5 tSNPs and the triallelic MDR1 variant G2677T/A using the Sequenom MassArray platform. Furthermore, the effects of these variants were examined in correlation with phenotypic clinical features. Results: Heterozygous carriers for the variants C1236T, rs2235046 (an SNP in intron 16), and G2677T/A showed a lower risk of developing ulcerative colitis (C1236T: odds ratio [OR] = 0.63, 95% confidence interval [CI] = 0.42‐0.93, P = 0.03; G2677T/A: OR = 0.59, CI = 0.39‐0.89, P = 0.02; and rs2235046: OR = 0.59, 95% CI = 0.38‐0.91, P = 0.009) as compared with homozygotes. None of the analyzed markers were associated with Crohns disease on a genotypic level. Subgroup analysis revealed an association for 2 variants with IBD when stratified for age of onset (C1236T SNP and rs3789243). The MDR1 variant C3435T was associated with disease behavior in CD (OR = 1.45, 95% CI = 1.01‐2.08, P = 0.04), whereas the SNP rs3789243 was found to be associated with pancolitis in UC patients (OR = 1.35, CI = 1.00‐1.82, P = 0.05). Conclusions: The results of our study support the role of MDR1 as a candidate gene for ulcerative colitis. Furthermore, our results suggest the possibility of a heterozygous advantage for certain MDR1 variants for this disease. Inflamm Bowel Dis 2009


Molecular Diagnosis & Therapy | 2006

Nutrigenomics: Integrating Genomic Approaches into Nutrition Research

Lynnette R. Ferguson; Martin Philpott; Barnett Mpg.

It has been suggested that the supermarket of today will be the pharmacy of tomorrow. Such statements have been derived from recognition of our increasing ability to optimize nutrition, and maintain a state of good health through longer periods of life. The new field of nutrigenomics, which focuses on the interaction between bioactive dietary components and the genome, recognizes that current nutritional guidelines may be ideal for only a relatively small proportion of the population. There is good evidence that nutrition has significant influences on the expression of genes, and, likewise, genetic variation can have a significant effect on food intake, metabolic response to food, individual nutrient requirements, food safety, and the efficacy of disease-protective dietary factors. For example, a significant number of human studies in various areas are increasing the evidence for interactions between single nucleotide polymorphisms (SNPs) in various genes and the metabolic response to diet, including the risk of obesity. Many of the same genetic polymorphisms and dietary patterns that influence obesity or cardiovascular disease also affect cancer, since overweight individuals are at increased risk of cancer development. The control of food intake is profoundly affected by polymorphisms either in genes encoding taste receptors or in genes encoding a number of peripheral signaling peptides such as insulin, leptin, ghrelin, cholecystokinin, and corresponding receptors. Total dietary intake, and the satiety value of various foods, will profoundly influence the effects of these genes. Identifying key SNPs that are likely to influence the health of an individual provides an approach to understanding and, ultimately, to optimizing nutrition at the population or individual level. Traditional methods for identification of SNPs may involve consideration of individual variants, using methodologies such as restriction fragment length polymorphisms or quantitative real-time PCR assays. New developments allow identification of up to 500,000 SNPs in an individual, and with increasingly lowered pricings these developments may explode the population-level potential for dietary optimization based on nutrigenomic approaches.


British Journal of Cancer | 1997

Production of tumour necrosis factor-alpha by cultured human peripheral blood leucocytes in response to the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid (NSC 640488).

Martin Philpott; W. R. Joseph; K. E. Crosier; Bruce C. Baguley; Lai-Ming Ching

The investigative anti-tumour agent 5,6-dimethylxanthenonone-4-acetic acid (DMXAA, NSC 640488), developed in this laboratory as an improved analogue of flavone acetic acid (FAA, NSC 347512), is currently in clinical trial. The ability of DMXAA to up-regulate tumour necrosis factor (TNF) mRNA and protein synthesis in cultured human peripheral blood leucocytes (HPBLs) has been investigated and compared with that of flavone acetic acid (FAA) and of bacterial lipopolysaccharide (LPS). Human peripheral blood leucocytes were isolated from buffy coats obtained from a blood transfusion centre and also from blood samples from laboratory volunteers. At a concentration of 400 microg ml(-1) and an incubation time of 2 h, DMXAA up-regulated mRNA synthesis in six of eight individuals tested, as measured by Northern blotting. The degree of up-regulation varied in different individuals from one to nine times that of control levels. In contrast, FAA caused no induction above that of control levels and in some cases suppressed expression relative to controls, extending previous data that DMXAA but not FAA up-regulates TNF mRNA in the human HL-60 tumour cell line. At the same concentration but with longer incubation times (6-12 h), DMXAA induced increases in TNF protein in 11 of 15 samples of HPBLs from buffy coats and also in 11 of 15 samples of HPBLs from volunteers, as measured by cytotoxicity assays with L929 cells. FAA caused no increase in TNF protein, while LPS induced TNF to approximately 20-fold higher levels than did DMXAA. Considerable heterogeneity of response was observed with both sources of HPBLs, and there was little or no correlation between the extent of TNF induction by DMXAA and LPS in individual samples. In vitro analysis of the response of human peripheral blood leucocytes to DMXAA may be a useful test in clinical trials of agents such as DMXAA.


Human Immunology | 2009

Interactions among genes influencing bacterial recognition increase IBD risk in a population-based New Zealand cohort

Ivonne Petermann; Claudia Huebner; Brian L. Browning; Richard B. Gearry; Murray L. Barclay; Martin A. Kennedy; Rebecca L. Roberts; Andrew N. Shelling; Martin Philpott; Dug Yeo Han; Lynnette R. Ferguson

Bacterial sensing is crucial for appropriate response by the innate and adaptive immune system against invading microorganisms. Single nucleotide polymorphisms (SNPs) in genes involved in bacterial recognition, CARD15 and TLR4, increased the risk of inflammatory bowel disease (IBD) in a New Zealand Caucasian case-control cohort. We now consider the effects of SNPs in CD14, TLR9, and BPI, analyzed individually, in association with one another, and with SNPs in CARD15 or TLR4 in this same population group. SNPs in CD14 (c.-159 C>T), TLR9 (c.-1237T>C) and BPI (c.645A>G) showed no significant allele or genotype frequency differences between IBD cases and controls. Genotype-phenotype mapping reveals an association with BPI and ileocolonic Crohns disease (CD) as well as an association with CD14 and early-onset ulcerative colitis (UC). Genotype interaction analyses using three different statistical approaches provided significant evidence of interaction for the following combinations: CARD15/TLR4 (CD and UC), CARD15/CD14 (CD and UC), CD14/TLR4 (UC only), and CD14/BPI (UC only). A trend for an association between BPI and TLR4 was observed in UC patients, but failed to reach statistical significance. Our findings support the idea of gene-gene interactions for genes involved in closely related pathways (i.e. bacterial detection). There is evidence that carrying two SNPs in genes may lead to statistical significance for genes and SNPs that do not otherwise confirm as risk alleles for disease aetiology when analysed alone.


International Journal of Molecular Sciences | 2009

Dietary Protection Against Free Radicals: A Case for Multiple Testing to Establish Structure-activity Relationships for Antioxidant Potential of Anthocyanic Plant Species

Martin Philpott; Chiara Cheng Lim; Lynnette R. Ferguson

DNA damage by reactive species is associated with susceptibility to chronic human degenerative disorders. Anthocyanins are naturally occurring antioxidants, that may prevent or reverse such damage. There is considerable interest in anthocyanic food plants as good dietary sources, with the potential for reducing susceptibility to chronic disease. While structure-activity relationships have provided guidelines on molecular structure in relation to free hydroxyl-radical scavenging, this may not cover the situation in food plants where the anthocyanins are part of a complex mixture, and may be part of complex structures, including anthocyanic vacuolar inclusions (AVIs). Additionally, new analytical methods have revealed new structures in previously-studied materials. We have compared the antioxidant activities of extracts from six anthocyanin-rich edible plants (red cabbage, red lettuce, blueberries, pansies, purple sweetpotato skin, purple sweetpotato flesh and Maori potato flesh) using three chemical assays (DPPH, TRAP and ORAC), and the in vitro Comet assay. Extracts from the flowering plant, lisianthus, were used for comparison. The extracts showed differential effects in the chemical assays, suggesting that closely related structures have different affinities to scavenge different reactive species. Integration of anthocyanins to an AVI led to more sustained radical scavenging activity as compared with the free anthocyanin. All but the red lettuce extract could reduce endogenous DNA damage in HT-29 colon cancer cells. However, while extracts from purple sweetpotato skin and flesh, Maori potato and pansies, protected cells against subsequent challenge by hydrogen peroxide at 0°C, red cabbage extracts were pro-oxidant, while other extracts had no effect. When the peroxide challenge was at 37°C, all of the extracts appeared pro-oxidant. Maori potato extract, consistently the weakest antioxidant in all the chemical assays, was more effective in the Comet assays. These results highlight the dangers of generalising to potential health benefits, based solely on identification of high anthocyanic content in plants, results of a single antioxidant assay and traditional approaches to structure activity relationships. Subsequent studies might usefully consider complex mixtures and a battery of assays.


Mutation Research | 2010

Food-derived bioactives as potential regulators of the IL-12/IL-23 pathway implicated in inflammatory bowel diseases

Francesca Danesi; Martin Philpott; Claudia Huebner; Alessandra Bordoni; Lynnette R. Ferguson

The gene-specific modulation of inflammatory cytokines by food bioactives represents a possible approach to the nutritional or pharmaceutical prevention and treatment of inflammatory bowel disease (IBD). There is evidence for a key role of the interleukin-12beta1/23 receptor (IL-12 Rbeta1/23 R) pathway in IBD, and that reduction of the normal expression of the IL-23 R gene may provide a therapeutic target for this disease. The binding of interleukin-23 (IL-23) to its receptor IL-23 R regulates a newly defined effector T-cell subset, Th17 cells, characterised by the production of interleukin-17 (IL-17) and other cytokines, including tumour necrosis factor-alpha (TNF-alpha). In this study we developed an assay that measured IL-17 and TNF-alpha expression after incubation with specific dietary bioactives in the human T-cell Kit 225. It is anticipated that these changes will reflect differences in IL-23 R production, albeit indirectly. The cell line Kit 225 has similarities to Th17 cells, a subset of T cells producing IL-17 and TNF-alpha, and in initial experiments we demonstrated that the cells express both IL-23 receptor subunits, as well as IL-17 and TNF-alpha genes. Upon verification that stimulation of Kit 225 cells with 1ng/mL IL-23 significantly upregulated IL-17 and TNF-alpha gene expression, and IL-17 production, we supplemented cells with selected food bioactives, caffeic acid phenethyl ester (CAPE), epigallocatechin gallate (EGCG), docosahexaenoic acid (DHA), and linoleic acid (LA), and with phorbol myristate acetate (PMA) and sodium salicylate, used as pro-inflammatory and anti-inflammatory controls, respectively. In both unstimulated cells and after IL-23 stimulation, bioactives modulated the pro-inflammatory cytokines involved in IBD, underlining the possible role of foods in this disease. EGCG and DHA, which significantly inhibited both IL-17 and TNF-alpha expression, appeared particularly interesting.

Collaboration


Dive into the Martin Philpott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dug Yeo Han

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin S. Gould

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge