Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Puhr is active.

Publication


Featured researches published by Martin Puhr.


American Journal of Pathology | 2012

Epithelial-to-Mesenchymal Transition Leads to Docetaxel Resistance in Prostate Cancer and Is Mediated by Reduced Expression of miR-200c and miR-205

Martin Puhr; Julia Hoefer; Georg Schäfer; Holger H.H. Erb; Su Jung Oh; Helmut Klocker; Isabel Heidegger; Hannes Neuwirt; Zoran Culig

Docetaxel is a standard chemotherapy for patients with metastatic prostate cancer. However, the response is rather limited and not all of the patients benefit from this treatment. To uncover key mechanisms of docetaxel insensitivity in prostate cancer, we have established docetaxel-resistant sublines. In this study, we report that docetaxel-resistant cells underwent an epithelial-to-mesenchymal transition during the selection process, leading to diminished E-cadherin levels and up-regulation of mesenchymal markers. Screening for key regulators of an epithelial phenotype revealed a significantly reduced expression of microRNA (miR)-200c and miR-205 in docetaxel-resistant cells. Transfection of either microRNA (miRNA) resulted in re-expression of E-cadherin. Functional assays confirmed reduced adhesive and increased invasive and migratory abilities. Furthermore, we detected an increased subpopulation with stem cell-like properties in resistant cells. Tissue microarray analysis revealed a reduced E-cadherin expression in tumors after neoadjuvant chemotherapy. Low E-cadherin levels could be linked to tumor relapse. The present study uncovers epithelial-to-mesenchymal transition as a hallmark of docetaxel resistance. Therefore, we suggest that this mechanism is at least in part responsible for chemotherapy failure, with implications for the development of novel therapeutics.


Molecular and Cellular Endocrinology | 2012

Interleukin-6: A multifunctional targetable cytokine in human prostate cancer

Zoran Culig; Martin Puhr

Highlights ► Interleukin-6 is a multifunctional cytokine which regulates growth of prostate cancer. ► Stimulation of androgen receptor activity by interleukin-6 may enhance or inhibit proliferation. ► Interleukin-6 inhibits apoptosis in several prostate cancer cell lines. ► Suppressor of cytokine signalling-3 is expressed in prostate cancer. ► Antibody CNTO 328 (Anti IL-6) was tested in preclinical research and clinical trials.


Endocrine-related Cancer | 2010

Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo.

Lei Gu; Paraskevi Vogiatzi; Martin Puhr; Ayush Dagvadorj; Jacqueline Lutz; Amy Ryder; Sankar Addya; Paolo Fortina; Carlton R. Cooper; Benjamin E. Leiby; Abhijit Dasgupta; Terry Hyslop; Lukas Bubendorf; Kalle Alanen; Tuomas Mirtti; Marja T. Nevalainen

There are no effective therapies for disseminated prostate cancer. Constitutive activation of Stat5 in prostate cancer is associated with cancer lesions of high histological grade. We have shown that Stat5 is activated in 61% of distant metastases of clinical prostate cancer. Active Stat5 increased metastases formation of prostate cancer cells in nude mice by 11-fold in an experimental metastases assay. Active Stat5 promoted migration and invasion of prostate cancer cells, and induced rearrangement of the microtubule network. Active Stat5 expression was associated with decreased cell surface E-cadherin levels, while heterotypic adhesion of prostate cancer cells to endothelial cells was stimulated by active Stat5. Activation of Stat5 and Stat5-induced binding of prostate cancer cells to endothelial cells were decreased by inhibition of Src but not of Jak2. Gene expression profiling indicated that 21% of Stat5-regulated genes in prostate cancer cells were related to metastases, while 7.9% were related to proliferation and 3.9% to apoptosis. The work presented here provides the first evidence of Stat5 involvement in the induction of metastatic behavior of human prostate cancer cells in vitro and in vivo. Stat5 may provide a therapeutic target protein for disseminated prostate cancer.


Embo Molecular Medicine | 2015

ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat

Simone Meidhof; Simone Brabletz; Waltraut Lehmann; Bogdan-Tiberius Preca; Manuel Ruh; Julia Schüler; Maria Berthold; Anika Weber; Ulrike Burk; Michael Lübbert; Martin Puhr; Zoran Culig; Ulrich F. Wellner; Tobias Keck; Peter Bronsert; Simon Küsters; Ulrich T. Hopt; Marc P. Stemmler; Thomas Brabletz

Therapy resistance is a major clinical problem in cancer medicine and crucial for disease relapse and progression. Therefore, the clinical need to overcome it, particularly for aggressive tumors such as pancreatic cancer, is very high. Aberrant activation of an epithelial–mesenchymal transition (EMT) and an associated cancer stem cell phenotype are considered a major cause of therapy resistance. Particularly, the EMT‐activator ZEB1 was shown to confer stemness and resistance. We applied a systematic, stepwise strategy to interfere with ZEB1 function, aiming to overcome drug resistance. This led to the identification of both its target gene miR‐203 as a major drug sensitizer and subsequently the class I HDAC inhibitor mocetinostat as epigenetic drug to interfere with ZEB1 function, restore miR‐203 expression, repress stemness properties, and induce sensitivity against chemotherapy. Thereby, mocetinostat turned out to be more effective than other HDAC inhibitors, such as SAHA, indicating the relevance of the screening strategy. Our data encourage the application of mechanism‐based combinations of selected epigenetic drugs with standard chemotherapy for the rational treatment of aggressive solid tumors, such as pancreatic cancer.


Cancer Research | 2009

Down-regulation of suppressor of cytokine signaling-3 causes prostate cancer cell death through activation of the extrinsic and intrinsic apoptosis pathways.

Martin Puhr; Frédéric R. Santer; Hannes Neuwirt; Martin Susani; Jeffrey A. Nemeth; Alfred Hobisch; Lukas Kenner; Zoran Culig

Suppressor of cytokine signaling-3 (SOCS-3) acts as a negative feedback regulator of the Janus-activated kinase/signal transducers and activators of transcription factors signaling pathway and plays an important role in the development and progression of various cancers. To better understand the role of SOCS-3 in prostate cancer, SOCS-3 expression was down-regulated in DU-145, LNCaP-IL-6+, and PC3 cells by consecutive SOCS-3 small interfering RNA transfections. SOCS-3 mRNA and protein expression as measured by quantitative reverse transcription-PCR and Western blot, respectively, were decreased by approximately 70% to 80% compared with controls. We observed a significant decrease in cell proliferation and viability in all SOCS-3-positive cell lines but not in the parental LNCaP cell line, which is SOCS-3 negative. In this study, we show that down-regulation of SOCS-3 leads to an increased cell death in prostate cancer cell lines. We found a considerable increase in the activation of the proapoptotic caspase-3/caspase-7, caspase-8, and caspase-9. A significant up-regulation of cleaved poly(ADP-ribose) polymerase and inhibition of Bcl-2 expression was observed in all SOCS-3-positive cell lines. Overexpression of Bcl-2 could rescue cells with decreased SOCS-3 levels from going into apoptosis. Tissue microarray data prove that SOCS-3 is highly expressed in castration-refractory tumor samples. In conclusion, we show that SOCS-3 is an important protein in the survival machinery in prostate cancer and is overexpressed in castration-resistant tumors. SOCS-3 knockdown results in an increase of cell death via activation of the extrinsic and intrinsic apoptosis pathways.


American Journal of Pathology | 2012

PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21

Julia Hoefer; Georg Schäfer; Helmut Klocker; Holger H.H. Erb; Ian G. Mills; Ludger Hengst; Martin Puhr; Zoran Culig

Prostate cancer development and progression are associated with alterations in expression and function of elements of cytokine networks, some of which can activate multiple signaling pathways. Protein inhibitor of activated signal transducers and activators of transcription (PIAS)1, a regulator of cytokine signaling, may be implicated in the modulation of cellular events during carcinogenesis. This study was designed to investigate the functional significance of PIAS1 in models of human prostate cancer. We demonstrate for the first time that PIAS1 protein expression is significantly higher in malignant areas of clinical prostate cancer specimens than in normal tissues, thus suggesting a growth-promoting role for PIAS1. Expression of PIAS1 was observed in the majority of tested prostate cancer cell lines. In addition, we investigated the mechanism by which PIAS1 might promote prostate cancer and found that down-regulation of PIAS1 leads to decreased proliferation and colony formation ability of prostate cancer cell lines. This decrease correlates with cell cycle arrest in the G0/G1 phase, which is mediated by increased expression of p21(CIP1/WAF1). Furthermore, PIAS1 overexpression positively influences cell cycle progression and thereby stimulates proliferation, which can be mechanistically explained by a decrease in the levels of cellular p21. Taken together, our data reveal an important new role for PIAS1 in the regulation of cell proliferation in prostate cancer.


American Journal of Pathology | 2009

Suppressor of Cytokine Signaling (SOCS)-1 Is Expressed in Human Prostate Cancer and Exerts Growth-Inhibitory Function through Down-Regulation of Cyclins and Cyclin-Dependent Kinases

Hannes Neuwirt; Martin Puhr; Frédéric R. Santer; Martin Susani; Wolfgang Doppler; Gemma Marcias; Veronika Rauch; Maria Brugger; Alfred Hobisch; Lukas Kenner; Zoran Culig

Suppressor of cytokine signaling (SOCS) proteins play a pivotal role in the development and progression of various cancers. We have previously shown that SOCS-3 is expressed in prostate cancer, and its expression is inversely correlated with activation of signal transducer and activator of transcription factor 3. We hypothesized that SOCS-1, if expressed in prostate cancer cells, has a growth-regulatory role in this malignancy. The presence of both SOCS-1 mRNA and protein was detected in all tested cell lines. To assess SOCS-1 expression levels in vivo, we analyzed tissue microarrays and found a high percentage of positive cells in both prostate intraepithelial neoplasias and cancers. SOCS-1 expression levels decreased in samples taken from patients undergoing hormonal therapy but increased in specimens from patients who failed therapy. In LNCaP-interleukin-6- prostate cancer cells, SOCS-1 was up-regulated by interleukin-6 and in PC3-AR cells by androgens; such up-regulation was also found to significantly impair cell proliferation. To corroborate these findings, we used a specific small interfering RNA against SOCS-1 and blocked expression of the protein. Down-regulation of SOCS-1 expression caused a potent growth stimulation of PC3, DU-145, and LNCaP-interleukin-6- cells that was associated with the increased expression levels of cyclins D1 and E as well as cyclin-dependent kinases 2 and 4. In summary, we show that SOCS-1 is expressed in prostate cancer both in vitro and in vivo and acts as a negative growth regulator.


Endocrine-related Cancer | 2013

In vitro model systems to study androgen receptor signaling in prostate cancer

Natalie Sampson; Hannes Neuwirt; Martin Puhr; Helmut Klocker; Iris E. Eder

Prostate cancer (PCa) is one of the most common causes of male cancer-related death in Western nations. The cellular response to androgens is mediated via the androgen receptor (AR), a ligand-inducible transcription factor whose dysregulation plays a key role during PCa development and progression following androgen deprivation therapy, the current mainstay systemic treatment for advanced PCa. Thus, a better understanding of AR signaling and new strategies to abrogate AR activity are essential for improved therapeutic intervention. Consequently, a large number of experimental cell culture models have been established to facilitate in vitro investigations into the role of AR signaling in PCa development and progression. These different model systems mimic distinct stages of this heterogeneous disease and exhibit differences with respect to AR expression/status and androgen responsiveness. Technological advances have facilitated the development of in vitro systems that more closely reflect the physiological setting, for example via the use of three-dimensional coculture to study the interaction of prostate epithelial cells with the stroma, endothelium, immune system and tissue matrix environment. This review provides an overview of the most commonly used in vitro cell models currently available to study AR signaling with particular focus on their use in addressing key questions relating to the development and progression of PCa. It is hoped that the continued development of in vitro models will provide more biologically relevant platforms for mechanistic studies, drug discovery and design ensuring a more rapid transfer of knowledge from the laboratory to the clinic.


Endocrine-related Cancer | 2007

Suppressor of cytokine signalling-3 is up-regulated by androgen in prostate cancer cell lines and inhibits androgen-mediated proliferation and secretion

Hannes Neuwirt; Martin Puhr; Ilaria Cavarretta; Michael Mitterberger; Alfred Hobisch; Zoran Culig

Suppressors of cytokine signalling (SOCS) are induced by interleukins (ILs) and various peptide hormones and may prevent sustained activation of signalling pathways. We have previously shown that SOCS-3 antagonizes regulation of cellular events by cAMP and is expressed in human prostate cancer. To investigate possible effects of androgen on SOCS-3 protein expression, two prostate cancer cell lines (PC3-AR and LAPC4) were treated with different concentrations of R1881. Western blot analyses revealed induction of SOCS-3 protein expression in both cell lines by androgen, an effect which can be blocked by the anti-androgen bicalutamide. To further characterize the effects of R1881 on the SOCS-3 gene, promoter-reporter assay and real-time PCR were performed. We found no influence of androgen on promoter activity or SOCS-3 mRNA levels, thus suggesting a post-transcriptional effect of androgen. Concordant with our previous findings, we show a significant increase of SOCS-3 protein after androgen treatment in cells in which transcription was blocked, but not in those with impaired translation. In order to understand implications of SOCS-3 regulation by androgen, we used SOCS-3-negative LNCaP-IL-6 cells and stably transfected them with a tetracycline-responsive SOCS-3 Tet-On plasmid. We report that androgenic effects on cell proliferation and prostate-specific antigen secretion are significantly diminished following up-regulation of SOCS-3. In conclusion, androgen up-regulates SOCS-3 protein via post-transcriptional effects. SOCS-3 inhibits androgen-stimulated proliferation by influencing cell cycle regulation. Taken together with previous findings showing androgen receptor activation by IL-6, our results imply that androgen and cytokine signalling pathways interact at multiple levels in prostate cancer.


Endocrine-related Cancer | 2010

SOCS-3 antagonises the proliferative and migratory effects of fibroblast growth factor-2 in prostate cancer by inhibition of p44/p42 MAPK signalling.

Martin Puhr; Frédéric R. Santer; Hannes Neuwirt; Gemma Marcias; Alfred Hobisch; Zoran Culig

Fibroblast growth factor-2 (FGF-2) is highly expressed in prostate cancer. It promotes tumour progression through multiple pathways including those of signal transducers and activators of transcription factor 3 (STAT3), mitogen-activated protein kinases (MAPKs) and Akt. In previous studies, we have reported that STAT3 phosphorylation inversely correlates with suppressor of cytokine signalling-3 (SOCS-3) expression in prostate cancer cells. Recently, it has become evident that SOCS-3-negative regulation is not only limited to the interleukin-6 (IL-6) receptor. We hypothesised that SOCS-3 interferes with FGF signalling, thus influencing the outcome of its action in prostate cancer cells. For this purpose, we treated DU-145 and LNCaP-IL-6+ cells with increasing concentrations of FGF-2, and verified protein phosphorylation. In the presence of FGF-2, neither STAT3, STAT1, nor Akt could be phosphorylated. Solely the p44/p42 MAPK pathway was activated after FGF-2 stimulation. We show for the first time that SOCS-3 interferes with the FGF-2 signalling pathway by modulating p44 and p42 phosphorylation in prostate cancer cells. Decreased SOCS-3 protein expression results in increased MAPK phosphorylation, whereas SOCS-3 overexpression leads to a decreased cellular proliferation and migration. On the basis of the present results, we propose that SOCS-3 is a novel modulator of FGF-2-regulated cellular events in prostate cancer.

Collaboration


Dive into the Martin Puhr's collaboration.

Top Co-Authors

Avatar

Zoran Culig

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Hannes Neuwirt

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Helmut Klocker

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Julia Hoefer

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Georg Schäfer

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Iris E. Eder

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Heidegger

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Holger H.H. Erb

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Frédéric R. Santer

Innsbruck Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge