Martin R. Sprick
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin R. Sprick.
Immunity | 2000
Martin R. Sprick; Markus A. Weigand; Eva Rieser; Charles Rauch; Peter Juo; John Blenis; Peter H. Krammer; Henning Walczak
Apoptosis induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO-2L) has been shown to exert important functions during various immunological processes. The involvement of the death adaptor proteins FADD/MORT1, TRADD, and RIP and the apoptosis-initiating caspases-8 and -10 in death signaling by the two death-inducing TRAIL receptors 1 and 2 (TRAIL-R1 and TRAIL-R2) are controversial. Analysis of the native TRAIL death-inducing signaling complex (DISC) revealed ligand-dependent recruitment of FADD/MORT1 and caspase-8. Differential precipitation of ligand-stimulated TRAIL receptors demonstrated that FADD/MORT1 and caspase-8 were recruited to TRAIL-R1 and TRAIL-R2 independently of each other. FADD/MORT1- and caspase-8-deficient Jurkat cells expressing only TRAIL-R2 were resistant to TRAIL-induced apoptosis. Thus, FADD/MORT1 and caspase-8 are essential for apoptosis induction via TRAIL-R2.
Nature Biotechnology | 2013
Irène Baccelli; Andreas Schneeweiss; Sabine Riethdorf; Albrecht Stenzinger; Anja Schillert; Vanessa Vogel; Corinna Klein; Massimo Saini; Tobias Bäuerle; Markus Wallwiener; Thomas Höfner; Martin R. Sprick; Martina Scharpff; Frederik Marme; Hans Peter Sinn; Klaus Pantel; Wilko Weichert; Andreas Trumpp
It has been hypothesized that carcinoma metastasis is initiated by a subpopulation of circulating tumor cells (CTCs) found in the blood of patients. However, although the presence of CTCs is an indicator of poor prognosis in several carcinoma entities, the existence and phenotype of metastasis-initiating cells (MICs) among CTCs has not been experimentally demonstrated. Here we developed a xenograft assay and used it to show that primary human luminal breast cancer CTCs contain MICs that give rise to bone, lung and liver metastases in mice. These MIC-containing CTC populations expressed EPCAM, CD44, CD47 and MET. In a small cohort of patients with metastases, the number of EPCAM+CD44+CD47+MET+ CTCs, but not of bulk EPCAM+ CTCs, correlated with lower overall survival and increased number of metastasic sites. These data describe functional circulating MICs and associated markers, which may aid the design of better tools to diagnose and treat metastatic breast cancer.
The EMBO Journal | 2002
Martin R. Sprick; Eva Rieser; Heiko Stahl; Anne Grosse-Wilde; Markus A. Weigand; Henning Walczak
The involvement of the death adaptor protein FADD and the apoptosis‐initiating caspase‐8 in CD95 and TRAIL death signalling has recently been demonstrated by the analysis of the native death‐inducing signalling complex (DISC) that forms upon ligand‐induced receptor cross‐linking. However, the role of caspase‐10, the other death‐effector‐domain‐containing caspase besides caspase‐8, in death receptor signalling has been controversial. Here we show that caspase‐10 is recruited not only to the native TRAIL DISC but also to the native CD95 DISC, and that FADD is necessary for its recruitment to and activation at these two protein complexes. With respect to the function of caspase‐10, we show that it is not required for apoptosis induction. In addition, caspase‐10 can not substitute for caspase‐8, as the defect in apoptosis induction observed in caspase‐8‐deficient cells could not be rescued by overexpression of caspase‐10. Finally, we demonstrate that caspase‐10 is cleaved during CD95‐induced apoptosis of activated T cells. These results show that caspase‐10 activation occurs in primary cells, but that its function differs from that of caspase‐8.
Cancer Research | 2010
Kristel Kemper; Martin R. Sprick; Martijn de Bree; Alessandro Scopelliti; Louis Vermeulen; Maarten Hoek; Jurrit Zeilstra; Steven T. Pals; Huseyin Mehmet; Giorgio Stassi; Jan Paul Medema
Colon cancer stem cells (CSC) can be identified with AC133, an antibody that detects an epitope on CD133. However, recent evidence suggests that expression of CD133 is not restricted to CSCs, but is also expressed on differentiated tumor cells. Intriguingly, we observed that detection of the AC133 epitope on the cell surface decreased upon differentiation of CSC in a manner that correlated with loss of clonogenicity. However, this event did not coincide with a change in CD133 promoter activity, mRNA, splice variant, protein expression, or even cell surface expression of CD133. In contrast, we noted that with CSC differentiation, a change occured in CD133 glycosylation. Thus, AC133 may detect a glycosylated epitope, or differential glycosylation may cause CD133 to be retained inside the cell. We found that AC133 could effectively detect CD133 glycosylation mutants or bacterially expressed unglycosylated CD133. Moreover, cell surface biotinylation experiments revealed that differentially glycosylated CD133 could be detected on the membrane of differentiated tumor cells. Taken together, our results argue that CD133 is a cell surface molecule that is expressed on both CSC and differentiated tumor cells, but is probably differentially folded as a result of differential glycosylation to mask specific epitopes. In summary, we conclude that AC133 can be used to detect cancer stem cells, but that results from the use of this antibody should be interpreted with caution.
Cell Death & Differentiation | 2008
Louis Vermeulen; Martin R. Sprick; K Kemper; Giorgio Stassi; Jan Paul Medema
Cancer has long been viewed as an exclusively genetic disorder. The model of carcinogenesis, postulated by Nowell and Vogelstein, describes the formation of a tumor by the sequential accumulation of mutations in oncogenes and tumor suppressor genes. In this model, tumors are thought to consist of a heterogeneous population of cells that continue to acquire new mutations, resulting in a highly dynamic process, with clones that out compete others due to increased proliferative or survival capacity. However, novel insights in cancer stem cell research suggest another layer of complexity in the process of malignant transformation and preservation. It has been reported that only a small fraction of the cancer cells in a malignancy have the capacity to propagate the tumor upon transplantation into immuno-compromised mice. Those cells are termed ‘cancer stem cells’ (CSC) and can be selected based on the expression of cell surface markers associated with immature cell types. In this review, we will critically discuss these novel insights in CSC-related research. Where possible we integrate these results within the genetic model of cancer and illustrate that the CSC model can be considered an extension of the classic genetic model rather than a contradictory theory. Finally, we discuss some of the most controversial issues in this field.
Cell Death & Differentiation | 2004
Tom M. Ganten; T L Haas; Jaromir Sykora; H Stahl; Martin R. Sprick; Stefanie C. Fas; Andreas Krueger; M A Weigand; Anne Grosse-Wilde; W Stremmel; Peter H. Krammer; Henning Walczak
AbstractTumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) exhibits potent antitumour activity upon systemic administration in mice without showing the deleterious side effects observed with other apoptosis-inducing members of the TNF family such as TNF and CD95L. TRAIL may, thus, have great potential in the treatment of human cancer. However, about 60% of tumour cell lines are not sensitive to TRAIL. To evaluate the mechanisms of tumour resistance to TRAIL, we investigated hepatocellular carcinoma (HCC) cell lines that exhibit differential sensitivity to TRAIL. Pretreatment with chemotherapeutic drugs, for example, 5-fluorouracil (5-FU), rendered the TRAIL-resistant HCC cell lines sensitive to TRAIL-induced apoptosis. Analysis of the TRAIL death-inducing signalling complex (DISC) revealed upregulation of TRAIL-R2. Caspase-8 recruitment to and its activation at the DISC were substantially increased after 5-FU sensitisation, while FADD recruitment remained essentially unchanged. 5-FU pretreatment downregulated cellular FLICE-inhibitory protein (cFLIP) and specific cFLIP downregulation by small interfering RNA was sufficient to sensitise TRAIL-resistant HCC cell lines for TRAIL-induced apoptosis. Thus, a potential mechanism for TRAIL sensitisation by 5-FU is the increased effectiveness of caspase-8 recruitment to and activation at the DISC facilitated by the downregulation of cFLIP and the consequent shift in the ratio of caspase-8 to cFLIP at the DISC.
Molecular and Cellular Biology | 2003
Martin Leverkus; Martin R. Sprick; Tina Wachter; Thilo Mengling; Bernd Baumann; Edgar Serfling; Eva-B. Bröcker; Matthias Goebeler; Manfred Neumann; Henning Walczak
ABSTRACT Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exerts potent cytotoxic activity against transformed keratinocytes, whereas primary keratinocytes are relatively resistant. In several cell types, inhibition of the proteasome sensitizes for TRAIL-induced apoptosis by interference with NF-κB activation. Here we describe a novel intracellular mechanism of TRAIL resistance in primary cells and how this resistance is removed by proteasome inhibitors independent of NF-κB in primary human keratinocytes. This sensitization was not mediated at the receptor-proximal level of TRAIL DISC formation or caspase 8 activation but further downstream. Activation of caspase 3 was critical, as it only occurred when mitochondrial apoptotic pathways were activated, as reflected by Smac/DIABLO, HtrA2, and cytochrome c release. Smac/DIABLO and HtrA2 are needed to release the X-linked inhibitor-of-apoptosis protein (XIAP)-mediated block of full caspase 3 maturation. XIAP can effectively block caspase 3 maturation and, intriguingly, is highly expressed in primary but not in transformed keratinocytes. Ectopic XIAP expression in transformed keratinocytes resulted in increased resistance to TRAIL. Our data suggest that breaking of this resistance via proteasome inhibitors, which are potential anticancer drugs, may sensitize certain primary cells to TRAIL-induced apoptosis and could thereby complicate the clinical applicability of a combination of TRAIL receptor agonists with proteasome inhibitors.
Clinical Cancer Research | 2007
Ronald Koschny; Heidrun Holland; Jaromir Sykora; Tobias Haas; Martin R. Sprick; Tom M. Ganten; Wolfgang Krupp; Manfred Bauer; Peter Ahnert; Jürgen Meixensberger; Henning Walczak
Purpose: Malignant gliomas are the most aggressive human brain tumors without any curative treatment. The antitumor effect of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) in gliomas has thus far only been thoroughly established in tumor cell lines. In the present study, we investigated the therapeutic potential of TRAIL in primary human glioma cells. Experimental Design: We isolated primary tumor cells from 13 astrocytoma and oligoastrocytoma patients of all four WHO grades of malignancy and compared the levels of TRAIL-induced apoptosis induction, long-term tumor cell survival, caspase, and caspase target cleavage. Results: We established a stable culture model for isolated primary human glioma cells. In contrast to cell lines, isolated primary tumor cells from all investigated glioma patients were highly TRAIL resistant. Regardless of the tumor heterogeneity, cotreatment with the proteasome inhibitor bortezomib efficiently sensitized all primary glioma samples for TRAIL-induced apoptosis and tremendously reduced their clonogenic survival. Due to the pleiotropic effect of bortezomibenhanced TRAIL DISC formation upon TRAIL triggering, down-regulation of cFLIPL and activation of the intrinsic apoptosis pathway seem to cooperatively contribute to the antitumor effect of bortezomib/TRAIL cotreatment. Conclusion: TRAIL sensitivity of tumor cell lines is not a reliable predictor for the behavior of primary tumor cells. The widespread TRAIL resistance in primary glioma cells described here questions the therapeutic clinical benefit of TRAIL as a monotherapeutic agent. Overcoming TRAIL resistance by bortezomib cotreatment might, however, provide a powerful therapeutic option for glioma patients.
Gastroenterology | 2010
Frederik J.H. Hoogwater; Maarten W. Nijkamp; Niels Smakman; Ernst J.A. Steller; Benjamin L. Emmink; B. Florien Westendorp; Danielle Raats; Martin R. Sprick; Uta Schaefer; Winan J. van Houdt; Menno T. de Bruijn; Ron C.J. Schackmann; Patrick W. B. Derksen; Jan Paul Medema; Henning Walczak; Inne H.M. Borel Rinkes; Onno Kranenburg
BACKGROUND & AIMS Death receptors expressed on tumor cells can prevent metastasis formation by inducing apoptosis, but they also can promote migration and invasion. The determinants of death receptor signaling output are poorly defined. Here we investigated the role of oncogenic K-Ras in determining death receptor function and metastatic potential. METHODS Isogenic human and mouse colorectal cancer cell lines differing only in the presence or absence of the K-Ras oncogene were tested in apoptosis and invasion assays using CD95 ligand and tumor necrois factor-related apoptosis-inducing ligand (TRAIL) as stimuli. Metastatic potential was assessed by intrasplenic injections of green fluorescent protein- or luciferase-expressing tumor cells, followed by intravital fluorescence microscopy or bioluminescence imaging, and confocal microscopy and immunohistochemistry. Ras-effector pathway control of CD95 output was assessed by an RNA-interference and inhibitor-based approach. RESULTS CD95 ligand and TRAIL stimulated invasion of colorectal tumor cells and liver metastases in a K-Ras-dependent fashion. Loss of mutant K-Ras switched CD95 and TRAIL receptors back into apoptosis mode and abrogated metastatic potential. Raf1 was essential for the switch in CD95 function, for tumor cell survival in the liver, and for K-Ras-driven formation of liver metastases. K-Ras and Raf1 suppressed Rho kinase (ROCK)/LIM kinase-mediated phosphorylation of the actin-severing protein cofilin. Overexpression of ROCK or LIM kinase allowed CD95L to induce apoptosis in K-Ras-proficient cells and prevented metastasis formation, whereas their suppression protected K-Ras-deficient cells against apoptosis. CONCLUSIONS Oncogenic K-Ras and its effector Raf1 convert death receptors into invasion-inducing receptors by suppressing the ROCK/LIM kinase pathway, and this is essential for K-Ras/Raf1-driven metastasis formation.
Journal of Immunology | 2003
Birgit Washburn; Markus A. Weigand; Anne Grosse-Wilde; Markus Janke; Heiko Stahl; Eva Rieser; Martin R. Sprick; Volker Schirrmacher; Henning Walczak
The Newcastle disease virus (NDV) has antineoplastic and immunostimulatory properties, and it is currently clinically tested in anticancer therapy. However, the tumoricidal mechanisms of NDV tumor therapy are not fully understood. The results presented here demonstrate that NDV-stimulated human monocytes (Mφ) kill various human tumor cell lines and that this tumoricidal activity is mediated by TRAIL. In contrast to soluble TRAIL-R2-Fc, soluble CD95-Fc and TNF-R2-Fc showed only minimal blocking of the antitumor effect. TRAIL expression is induced on human Mφ after stimulation with NDV and UV-inactivated NDV. These results show that TRAIL induction on human Mφ after NDV stimulation is independent from viral replication and that TRAIL mediates the tumoricidal activity of NDV-stimulated human Mφ.