Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin R. Ward is active.

Publication


Featured researches published by Martin R. Ward.


Physical Chemistry Chemical Physics | 2012

Non-photochemical laser-induced nucleation of supercooled glacial acetic acid

Martin R. Ward; Stephanie McHugh; Andrew J. Alexander

Non-photochemical laser-induced nucleation (NPLIN) of glacial acetic acid (GAA) is demonstrated. The fraction of samples nucleated depends linearly on peak laser power density at low powers (<100 MW cm(-2)) with a threshold of (9.0 ± 4.2) MW cm(-2); at higher laser powers the fraction reaches a plateau of 0.75 ± 0.24 (2σ uncertainties). A simple model based on polarizability of pre-nucleating clusters gives a value of the solid-liquid interfacial tension γ(SL) = 15.5 mJ m(-2). It is hoped that the results will stimulate new developments in experimental and theoretical studies of cluster structure and nucleation in liquids.


Journal of Chemical Physics | 2011

Chiral hide-and-seek: Retention of enantiomorphism in laser-induced nucleation of molten sodium chlorate

Martin R. Ward; Gary W. Copeland; Andrew J. Alexander

We report the observation of non-photochemical laser-induced nucleation (NPLIN) of sodium chlorate from its melt using nanosecond pulses of light at 1064 nm. The fraction of samples that nucleate is shown to depend linearly on the peak power density of the laser pulses. Remarkably, we observe that most samples are nucleated by the laser back into the enantiomorph (dextrorotatory or levorotatory) of the solid prior to melting. We do not observe a significant dependence on polarization of the light, and we put forward symmetry arguments that rule out an optical Kerr effect mechanism. Our observations of retention of chirality can be explained by decomposition of small amounts of the sodium chlorate to form sodium chloride, which provide cavities for retention of clusters of sodium chlorate even 18 °C above the melting point. These clusters remain sub-critical on cooling, but can be activated by NPLIN via an isotropic polarizability mechanism. We have developed a heterogeneous model of NPLIN in cavities, which reproduces the experimental data using simple physical data available for sodium chlorate.


Journal of Chemical Physics | 2015

Laser-induced nucleation of carbon dioxide bubbles

Martin R. Ward; William J. Jamieson; Claire A. Leckey; Andrew J. Alexander

A detailed experimental study of laser-induced nucleation (LIN) of carbon dioxide (CO2) gas bubbles is presented. Water and aqueous sucrose solutions supersaturated with CO2 were exposed to single nanosecond pulses (5 ns, 532 nm, 2.4-14.5 MW cm(-2)) and femtosecond pulses (110 fs, 800 nm, 0.028-11 GW cm(-2)) of laser light. No bubbles were observed with the femtosecond pulses, even at high peak power densities (11 GW cm(-2)). For the nanosecond pulses, the number of bubbles produced per pulse showed a quadratic dependence on laser power, with a distinct power threshold below which no bubbles were observed. The number of bubbles observed increases linearly with sucrose concentration. It was found that filtering of solutions reduces the number of bubbles significantly. Although the femtosecond pulses have higher peak power densities than the nanosecond pulses, they have lower energy densities per pulse. A simple model for LIN of CO2 is presented, based on heating of nanoparticles to produce vapor bubbles that must expand to reach a critical bubble radius to continue growth. The results suggest that non-photochemical laser-induced nucleation of crystals could also be caused by heating of nanoparticles.


Chemical Communications | 2010

Enantiomorphic symmetry breaking in crystallization of molten sodium chlorate

Martin R. Ward; Gary W. Copeland; Andrew J. Alexander

Enantiomorphic symmetry breaking of stirred samples of molten sodium chlorate is demonstrated, revealing the unexpected involvement of an achiral solid phase. The results should stimulate future computational models of nucleation, including symmetry breaking, and have implications for mechanisms that invoke enantiomorphism in natural minerals to explain biohomochirality.


Faraday Discussions | 2015

Solvent and additive interactions as determinants in the nucleation pathway: general discussion

Changquan Calvin Sun; Wenhao Sun; Sarah L. Price; Colan Evan Hughes; Joop H. ter Horst; Stéphane Veesler; Kenneth Lewtas; Allan S. Myerson; Haihua Pan; Gérard Coquerel; Joost van den Ende; Hugo Meekes; Marco Mazzotti; Ian Rosbottom; Francis Taulelle; Simon Black; Alasdair MacKenzie; Sophie Janbon; Peter G. Vekilov; Terence L. Threlfall; T. D. Turner; Kevin Back; H. M. Cuppen; Dimitrios Toroz; Jan Sefcik; Jessica Lovelock; Robert B. Hammond; Nadine Candoni; Elena Simone; Martin R. Ward

Sarah Price opened a general discussion of the paper by Sven Schroeder: I have been generating the thermodynamically plausible crystal structures of organic molecules for many years, and back in 2004 we did a crystal structure prediction (CSP) study on imidazole1 and found that it was relatively straightforward. Following your paper, we have reclassified the low energy structures according to the tilt within the hydrogen-bonded chain and the relative direction of the chains. Although the observed structure was the global minimum, two other structures with a displacement of otherwise identical layers are very close in energy. Do you think that if imidazole had crystallised in one of these alternative structures it would be distinguishable by NEXAFS? This would be a very sensitive test of whether NEXAFS combined with CSP could be used in characterising crystal structures.


Faraday Discussions | 2013

Second-harmonic scattering in aqueous urea solutions: evidence for solute clusters?

Martin R. Ward; Stanley W. Botchway; Andrew D. Ward; Andrew J. Alexander

Measurements of second-harmonic scattering (SHS) from concentrated aqueous solutions of urea are reported for the first time using scanning microscopy. SHS signal was measured as a function of solution concentration (C) over a range of saturation conditions from undersaturated (S = 0.15) to supersaturated (5 = 1.86), where S = C/C(sat) and C(sat) is the saturation concentration. The results show a non-linear increase in SHS signal against concentration, with local maxima near S = 0.95 and 1.75 suggesting a change in solution structure near these points. Rayleigh scattering images indicate the presence of particles in nearly saturated (S = 0.95) urea solutions. Time-dependent SHS measurements indicate that signals originate from individual events encountered during scanning of the focal volume through the solution, consistent with second harmonic generation (SHG) from particles. SHG from aqueous dispersions of barium titanate (BaTiO3) nanoparticles with diameters <200 nm, showed signals approximately 20 times larger than urea solutions. The results suggest the existence of a population of semi-ordered clusters of urea that changes with solution concentration.


Faraday Discussions | 2015

Time and space resolved methods: General discussion

Wenhao Sun; Samuel G. Booth; Allan S. Myerson; Colan Evan Hughes; Haihua Pan; Gérard Coquerel; Clément Brandel; Hugo Meekes; Marco Mazzotti; Laszlo Fabian; Simon Black; Peter G. Vekilov; Kevin Back; Dimitrios Toroz; Jessica Lovelock; Jan Sefcik; Åke C. Rasmuson; Eric Breynaert; Richard P. Sear; Robert B. Hammond; Martin R. Ward; Terence L. Threlfall; Jim De Yoreo; Roger J. Davey; R.I. Ristic; Kenneth Lewtas; Kevin J. Roberts; Alan Hare; Martí Gich; Helmut Cölfen

Jim De Yoreo presented some slides on in situ AFM, TEM, dynamic force spectroscopy (DFS) and optical spectroscopy investigations of nucleation in the calcium carbonate system: The free energy barrier to homogeneous nucleation of calcite calculated within the framework of classical nucleation theory (CNT) is prohibitive, even at concentrations exceeding the solubility limits of the amorphous phases. Consistent with this analysis, during nucleation in pure solutions, in our in situ TEM experiments we observed direct formation of all phases, including amorphous calcium carbonate (ACC), as well as the three predominant crystalline phases: calcite, vaterite, and aragonite, even under conditions in which ACC readily forms. In addition to direct formation pathways, we observed indirect pathways in which ACC transforms to aragonite and vaterite through nucleation within or on the precursors, rather than via dissolution and reprecipitation. We also observed aragonate transformation to calcite, but never recorded an instance in which ACC transforms into calcite, except via dissolution–reprecipitation reactions.


Crystal Growth & Design | 2012

Nonphotochemical Laser-Induced Nucleation of Potassium Halides: Effects of Wavelength and Temperature**

Martin R. Ward; Andrew J. Alexander


Chemical Physics Letters | 2009

Nanosecond pulse width dependence of nonphotochemical laser-induced nucleation of potassium chloride

Martin R. Ward; Iain Ballingall; Matthew L. Costen; Kenneth G. McKendrick; Andrew J. Alexander


Crystal Growth & Design | 2015

Nonphotochemical Laser-Induced Crystal Nucleation by an Evanescent Wave

Martin R. Ward; Alasdair Rae; Andrew J. Alexander

Collaboration


Dive into the Martin R. Ward's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Sefcik

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar

Kevin Back

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan S. Myerson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge