Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Romantschuk is active.

Publication


Featured researches published by Martin Romantschuk.


BMC Microbiology | 2010

Bacterial diversity at different stages of the composting process

Pasi Partanen; Jenni Hultman; Lars Paulin; Petri Auvinen; Martin Romantschuk

BackgroundComposting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA.ResultsOver 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts.ConclusionsInterestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants.


Environmental Pollution | 2000

Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches

Martin Romantschuk; Inga Sarand; Tiina Petänen; Rainer Peltola; M Jonsson-Vihanne; Teija Koivula; Kim Yrjälä; Kielo Haahtela

Different aspects of bacterial degradation of organic contaminants in soil, and how to improve the efficiency and reproducibility is discussed in this review. Although bioremediation in principle includes the use of any type of organism in improving the condition of a contaminated site, most commonly bacteria are the degraders and other organisms, such as soil animals or plant roots, play a role in dissemination of bacteria and, indirectly, plasmids between bacteria, and in providing nutrients and co-substrates for the bacteria active in the degradation process. There are a number of different procedures that have been tested more-or-less successfully in attempts to improve reliability, cost efficiency and speed of bioremediation. The methods range from minimal intervention, such as mere monitoring of intrinsic bioremediation, through in situ introduction of nutrients and/or bacterial inocula or improvement of physico-chemical conditions, all the way to excavation followed by on site or ex situ composting in its different varieties. In the past the rule has been that more intervention (leading to higher costs) has been more reliable, but novel ideas are continuously tried out, both as a means to come up with new truly functional applications and also as a line of studies in basic soil microbial ecology. Both approaches generate valuable information needed when predicting outcome of remediation activities, evaluating environmental risks, deciding on cleaning-up approaches, etc. The emphasis of this review is to discuss some of the novel methods for which the value has not been clearly shown, but that in our view merit continued studies and efforts to make them work, separately or in combination.


The EMBO Journal | 2002

The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ

Chun-Mei Li; Ian Brown; John W. Mansfield; Conrad Stevens; Tristan Boureau; Martin Romantschuk; Suvi Taira

The type III secretion system (TTSS) is an essential requirement for the virulence of many Gram‐negative bacteria infecting plants, animals and man. Pathogens use the TTSS to deliver effector proteins from the bacterial cytoplasm to the eukaryotic host cell, where the effectors subvert host defences. Plant pathogens have to translocate their effector proteins through the plant cell wall barrier. The best candidates for directing effector protein traffic are bacterial appendages attached to the membrane‐bound components of the TTSS. We have investigated the protein secretion route in relation to the TTSS appendage, termed the Hrp pilus, of the plant pathogen Pseudomonas syringae pv. tomato. By pulse expression of proteins combined with immunoelectron microscopy, we show that the Hrp pilus elongates by the addition of HrpA pilin subunits at the distal end, and that the effector protein HrpZ is secreted only from the pilus tip. Our results indicate that both HrpA and HrpZ travel through the Hrp pilus, which functions as a conduit for the long‐distance translocation of effector proteins.


Molecular Plant-microbe Interactions | 2001

Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall

Ian Brown; John W. Mansfield; Suvi Taira; Elina Roine; Martin Romantschuk

The Hrp pilus, composed of HrpA subunits, is an essential component of the type III secretion system in Pseudomonas syringae. We used electron microscopy (EM) and immunocytochemistry to examine production of the pilus in vitro from P. syringae pv. tomato strain DC3000 grown under hrp-inducing conditions on EM grids. Pili, when labeled with antibodies to HrpA, developed rapidly in a nonpolar manner shortly after the detection of the hrpA transcript and extended up to 5 microm into surrounding media. Structures at the base of the pilus were clearly differentiated from the basal bodies of flagella. The HrpZ protein, also secreted via the type III system, was found by immunogold labeling to be associated with the pilus in vitro. Accumulation and secretion of HrpA and HrpZ were also examined quantitatively after the inoculation of wild-type DC3000 and hrpA and hrpZ mutants into leaves of Arabidopsis thaliana. The functional pilus crossed the plant cell wall to generate tracks of immunogold labeling for HrpA and HrpZ. Mutants that produced HrpA but did not assemble pili were nonpathogenic, did not secrete HrpA protein, and were compromised for the accumulation of HrpZ. A model is proposed in which the rapidly elongating Hrp pilus acts as a moving conveyor, facilitating transfer of effector proteins from bacteria to the plant cytoplasm across the formidable barrier of the plant cell wall.


Molecular Plant-microbe Interactions | 1998

Characterization of Type IV Pilus Genes in Pseudomonas syringae pv. tomato DC3000

Elina Roine; Deanna M. Raineri; Martin Romantschuk; Mark Wilson; David N. Nunn

Many strains of Pseudomonas syringae produce retractile pili that act as receptors for lytic bacteriophage phi 6. As these are also characteristics of type IV pili, it was postulated that P. syringae may possess genes for type IV pilus biogenesis. A cosmid clone bank of P. syringae pv. tomato DC3000 genomic DNA was used to complement a mutant of Pseudomonas aeruginosa defective in the PilD (XcpA) prepilin peptidase gene by selection for restoration of extracellular protein secretion, a function also known to require PilD. A cosmid able to complement this mutant was also able to complement mutations in the pilB and pilC genes, suggesting that, if the organization of these genes is similar to that of P. aeruginosa, the cosmid may contain the P. syringae pilA. This was confirmed by sequencing a region from this plasmid that was shown to hybridize at low stringency to the P. aeruginosa pilA gene. The deduced P. syringae PilA polypeptide possesses the characteristic properties of the type IV pilins. Heterologous expression of the P. syringae pilA in P. aeruginosa was also shown, conferring not only phi 6 phage sensitivity to P. aeruginosa pilA mutants but also sensitivity to PO4, a lytic bacteriophage specific for the pilus of P. aeruginosa. This suggests that additional components might be present in the mature pilus of P. aeruginosa that are the true receptors for this phage. Chromosomal mutations in P. syringae pv. tomato DC3000 pilA and pilD genes were shown to abolish its sensitivity to bacteriophage phi 6. To determine the importance of P. syringae pilus in plant leaf interactions, these mutations were tested under laboratory and field conditions. Although little effect was seen on pathogenicity, culturable leaf-associated population sizes of the pilA mutant were significantly different from those of the wild-type parent. In addition, the expression of the DC3000 pilA gene appears to contribute to the UV tolerance of P. syringae and may play a role in survival on the plant leaf surface.


Molecular Plant-microbe Interactions | 2001

Type III Secretion Contributes to the Pathogenesis of the Soft-Rot Pathogen Erwinia carotovora: Partial Characterization of the hrp Gene Cluster

A. Rantakari; O. Virtaharju; S. Vähämiko; Suvi Taira; E. T. Palva; H. T. Saarilahti; Martin Romantschuk

The virulence of soft-rot Erwinia species is dependent mainly upon secreted enzymes such as pectinases, pectin lyases, and proteases that cause maceration of plant tissue. Some soft-rot Erwinia spp. also harbor genes homologous to the hypersensitive reaction and pathogenesis (hrp) gene cluster, encoding components of the type III secretion system. The hrp genes are essential virulence determinants for numerous nonmacerating gram-negative plant pathogens but their role in the virulence of soft-rot Erwinia spp. is not clear. We isolated and characterized 11 hrp genes of Erwinia carotovora subsp. carotovora. Three putative sigmaL-dependent Hrp box promoter sequences were found. The genes were expressed when the bacteria were grown in Hrp-inducing medium. The operon structure of the hrp genes was determined by mRNA hybridization, and the results were in accordance with the location of the Hrp boxes. An E. carotovora strain with mutated hrcC, an essential hrp gene, was constructed. The hrcC- strain was able to multiply and cause disease in Arabidopsis, but the population kinetics were altered so that growth was delayed during the early stages of infection.


Virology | 1988

Nucleotide sequence of the middle dsRNA segment of bacteriophage φ6: Placement of the genes of membrane-associated proteins

Paul Gottlieb; Shulamit Metzger; Martin Romantschuk; Jacob Carton; Jeffrey Strassman; Dennis H. Bamford; Nisse Kalkkinen; Leonard Mindich

The genome of the lipid-containing bacteriophage phi 6 contains three segments of double-stranded RNA. We have determined the nucleotide sequence of cDNA derived from the middle-size RNA segment. The coding sequences of three proteins on this segment were identified on the basis of size and the correlation of predicted N-terminal amino acid sequences with those found through the analysis of isolated proteins. In contrast to our results with the small phi 6 dsRNA segment, the open reading frames are not tightly clustered. The homologous terminal noncoding regions between the middle and small dsRNA segments are found to be more extensive than RNA sequencing had previously indicated.


Journal of Bacteriology | 2005

The Type III-Dependent Hrp Pilus Is Required for Productive Interaction of Xanthomonas campestris pv. vesicatoria with Pepper Host Plants

Ernst Weber; Tuula Ojanen-Reuhs; Elisabeth Huguet; Gerd Hause; Martin Romantschuk; Timo K. Korhonen; Ulla Bonas; Ralf Koebnik

The plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria expresses a type III secretion system that is necessary for both pathogenicity in susceptible hosts and the induction of the hypersensitive response in resistant plants. This specialized protein transport system is encoded by a 23-kb hrp (hypersensitive response and pathogenicity) gene cluster. Here we show that X. campestris pv. vesicatoria produces filamentous structures, the Hrp pili, at the cell surface under hrp-inducing conditions. Analysis of purified Hrp pili and immunoelectron microscopy revealed that the major component of the Hrp pilus is the HrpE protein which is encoded in the hrp gene cluster. Sequence homologues of hrpE are only found in other xanthomonads. However, hrpE is syntenic to the hrpY gene from another plant pathogen, Ralstonia solanacearum. Bioinformatic analyses suggest that all major Hrp pilus subunits from gram-negative plant pathogens may share the same structural organization, i.e., a predominant alpha-helical structure. Analysis of nonpolar mutants in hrpE demonstrated that the Hrp pilus is essential for the productive interaction of X. campestris pv. vesicatoria with pepper host plants. Furthermore, a functional Hrp pilus is required for type III-dependent protein secretion. Immunoelectron microscopy revealed that type III-secreted proteins, such as HrpF and AvrBs3, are in close contact with the Hrp pilus during and/or after their secretion. By systematic analysis of nonpolar hrp/hrc (hrp conserved) and hpa (hrp associated) mutants, we found that Hpa proteins as well as the translocon protein HrpF are dispensable for pilus assembly, while all other Hrp and Hrc proteins are required. Hence, there are no other conserved Hrp or Hrc proteins that act downstream of HrpE during type III-dependent protein translocation.


Waste Management | 2013

Effects of pH and microbial composition on odour in food waste composting

Cecilia Sundberg; Dan Yu; Ingrid H. Franke-Whittle; Sari Kauppi; Sven Smårs; Heribert Insam; Martin Romantschuk; Håkan Jönsson

Highlights ► High odour emission from food waste compost was correlated to low pH. ► Microbes in high-odour samples included Lactic acid bacteria and Clostridia. ► For odour prevention, try high initial aeration rate and recycled compost as additive.


Environmental Pollution | 2000

Evaluation of the Galega-Rhizobium galegae system for the bioremediation of oil-contaminated soil.

Leena Suominen; Minna M. Jussila; Katri Mäkeläinen; Martin Romantschuk; Kristina Lindström

The bioremediation potential of a nitrogen-fixing leguminous plant, Galega orientalis, and its microsymbiont Rhizobium galegae was evaluated in BTX (benzene, toluene, xylene)-contaminated soils in microcosm and mesocosm scale. To measure the intrinsic tolerance of the organisms to m-toluate, a model compound representing BTX, G. orientalis and R. galegae were cultivated under increasing concentrations of m-toluate alone and in association with Pseudomonas putida pWWO, a bacterial strain able to degrade toluene-derived compounds. The test plants and rhizobia remained viable in m-toluate concentrations as high as 3000 ppm. Plant growth was inhibited in concentrations higher than 500 ppm, but restituted when plants were transferred into m-toluate-free medium. Nodulation was blocked under the influence of m-toluate, but was restored after the plants were transferred into the non-contaminated media. In the mesocosm assay the Galega plants showed good growth, nodulation and nitrogen fixation, and developed a strong rhizosphere in soils contaminated with oil or spiked with 2000 ppm m-toluate. Thus, this legume system has good potential for use on oil-contaminated sites

Collaboration


Dive into the Martin Romantschuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suvi Taira

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Elina Roine

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Yu

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Sari Kauppi

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nan Hui

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Lars Paulin

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge