Martin Sauvageau
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Sauvageau.
Nature Biotechnology | 2013
Cole Trapnell; David G. Hendrickson; Martin Sauvageau; Loyal A. Goff; John L. Rinn; Lior Pachter
Differential analysis of gene and transcript expression using high-throughput RNA sequencing (RNA-seq) is complicated by several sources of measurement variability and poses numerous statistical challenges. We present Cuffdiff 2, an algorithm that estimates expression at transcript-level resolution and controls for variability evident across replicate libraries. Cuffdiff 2 robustly identifies differentially expressed transcripts and genes and reveals differential splicing and promoter-preference changes. We demonstrate the accuracy of our approach through differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1, which we show is required for lung fibroblast and HeLa cell cycle progression. Loss of HOXA1 results in significant expression level changes in thousands of individual transcripts, along with isoform switching events in key regulators of the cell cycle. Cuffdiff 2 performs robust differential analysis in RNA-seq experiments at transcript resolution, revealing a layer of regulation not readily observable with other high-throughput technologies.
Cell Stem Cell | 2010
Martin Sauvageau; Guy Sauvageau
Polycomb Group (PcG) proteins are transcriptional repressors that epigenetically modify chromatin and participate in the establishment and maintenance of cell fates. These proteins play important roles in both stem cell self-renewal and in cancer development. Our understanding of their mechanism of action has greatly advanced over the past 10 years, but many unanswered questions remain. In this review, we present the currently available experimental data that connect PcG protein function with some of the key processes which govern somatic stem cell activity. We also highlight recent studies suggesting that a delicate balance in PcG gene dosage is crucial for proper stem cell homeostasis and prevention of cancer stem cell development.
eLife | 2013
Martin Sauvageau; Loyal A. Goff; Simona Lodato; Boyan Bonev; Abigail F. Groff; Chiara Gerhardinger; Diana B. Sanchez-Gomez; Ezgi Hacisuleyman; Eric Li; Matthew Spence; Stephen C. Liapis; William Mallard; Michael A. Morse; Mavis R. Swerdel; Michael F D’Ecclessis; Jennifer C. Moore; Venus Lai; Guochun Gong; George D. Yancopoulos; David Frendewey; Manolis Kellis; Ronald P. Hart; David M. Valenzuela; Paola Arlotta; John L. Rinn
Many studies are uncovering functional roles for long noncoding RNAs (lncRNAs), yet few have been tested for in vivo relevance through genetic ablation in animal models. To investigate the functional relevance of lncRNAs in various physiological conditions, we have developed a collection of 18 lncRNA knockout strains in which the locus is maintained transcriptionally active. Initial characterization revealed peri- and postnatal lethal phenotypes in three mutant strains (Fendrr, Peril, and Mdgt), the latter two exhibiting incomplete penetrance and growth defects in survivors. We also report growth defects for two additional mutant strains (linc–Brn1b and linc–Pint). Further analysis revealed defects in lung, gastrointestinal tract, and heart in Fendrr−/− neonates, whereas linc–Brn1b−/− mutants displayed distinct abnormalities in the generation of upper layer II–IV neurons in the neocortex. This study demonstrates that lncRNAs play critical roles in vivo and provides a framework and impetus for future larger-scale functional investigation into the roles of lncRNA molecules. DOI: http://dx.doi.org/10.7554/eLife.01749.001
Nature Structural & Molecular Biology | 2014
Ezgi Hacisuleyman; Loyal A. Goff; Cole Trapnell; Adam Williams; Jorge Henao-Mejia; Lei Sun; Patrick McClanahan; David G. Hendrickson; Martin Sauvageau; David R. Kelley; Michael A. Morse; Jesse M. Engreitz; Eric S. Lander; Mitch Guttman; Harvey F. Lodish; Richard A. Flavell; Arjun Raj; John L. Rinn
RNA is known to be an abundant and important structural component of the nuclear matrix, including long noncoding RNAs (lncRNA). Yet the molecular identities, functional roles, and localization dynamics of lncRNAs that influence nuclear architecture remain poorly understood. Here, we describe one lncRNA, Firre, that interacts with the nuclear matrix factor hnRNPU, through a 156 bp repeating sequence and Firre localizes across a ~5 Mb domain on the X-chromosome. We further observed Firre localization across at least five distinct trans-chromosomal loci, which reside in spatial proximity to the Firre genomic locus on the X-chromosome. Both genetic deletion of the Firre locus or knockdown of hnRNPU resulted in loss of co-localization of these trans-chromosomal interacting loci. Thus, our data suggest a model in which lncRNAs such as Firre can interface with and modulate nuclear architecture across chromosomes.RNA, including long noncoding RNA (lncRNA), is known to be an abundant and important structural component of the nuclear matrix. However, the molecular identities, functional roles and localization dynamics of lncRNAs that influence nuclear architecture remain poorly understood. Here, we describe one lncRNA, Firre, that interacts with the nuclear-matrix factor hnRNPU through a 156-bp repeating sequence and localizes across an ~5-Mb domain on the X chromosome. We further observed Firre localization across five distinct trans-chromosomal loci, which reside in spatial proximity to the Firre genomic locus on the X chromosome. Both genetic deletion of the Firre locus and knockdown of hnRNPU resulted in loss of colocalization of these trans-chromosomal interacting loci. Thus, our data suggest a model in which lncRNAs such as Firre can interface with and modulate nuclear architecture across chromosomes.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Lei Sun; Loyal A. Goff; Cole Trapnell; Ryan Alexander; Kinyui Alice Lo; Ezgi Hacisuleyman; Martin Sauvageau; Barbara Tazon-Vega; David R. Kelley; David G. Hendrickson; Bingbing Yuan; Manolis Kellis; Harvey F. Lodish; John L. Rinn
The prevalence of obesity has led to a surge of interest in understanding the detailed mechanisms underlying adipocyte development. Many protein-coding genes, mRNAs, and microRNAs have been implicated in adipocyte development, but the global expression patterns and functional contributions of long noncoding RNA (lncRNA) during adipogenesis have not been explored. Here we profiled the transcriptome of primary brown and white adipocytes, preadipocytes, and cultured adipocytes and identified 175 lncRNAs that are specifically regulated during adipogenesis. Many lncRNAs are adipose-enriched, strongly induced during adipogenesis, and bound at their promoters by key transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (CEBPα). RNAi-mediated loss of function screens identified functional lncRNAs with varying impact on adipogenesis. Collectively, we have identified numerous lncRNAs that are functionally required for proper adipogenesis.
Genes & Development | 2012
Camille Simon; Jalila Chagraoui; Jana Krosl; Patrick Gendron; Brian T. Wilhelm; Sébastien Lemieux; Geneviève Boucher; Pierre Chagnon; Simon Drouin; Raphaëlle Lambert; Claude Rondeau; Annie Bilodeau; Sylvie Lavallée; Martin Sauvageau; Josée Hébert; Guy Sauvageau
In this study, we show the high frequency of spontaneous γδ T-cell leukemia (T-ALL) occurrence in mice with biallelic deletion of enhancer of zeste homolog 2 (Ezh2). Tumor cells show little residual H3K27 trimethylation marks compared with controls. EZH2 is a component of the PRC2 Polycomb group protein complex, which is associated with DNA methyltransferases. Using next-generation sequencing, we identify alteration in gene expression levels of EZH2 and acquired mutations in PRC2-associated genes (DNMT3A and JARID2) in human adult T-ALL. Together, these studies document that deregulation of EZH2 and associated genes leads to the development of mouse, and likely human, T-ALL.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Loyal A. Goff; Abigail F. Groff; Martin Sauvageau; Zachary Trayes-Gibson; Diana B. Sanchez-Gomez; Michael A. Morse; Ryan D. Martin; Lara Elcavage; Stephen C. Liapis; Meryem Gonzalez-Celeiro; Olivia Plana; Eric Li; Chiara Gerhardinger; Giulio Srubek Tomassy; Paola Arlotta; John L. Rinn
Long noncoding RNAs (lncRNAs) have been implicated in numerous cellular processes including brain development. However, the in vivo expression dynamics and molecular pathways regulated by these loci are not well understood. Here, we leveraged a cohort of 13 lncRNA-null mutant mouse models to investigate the spatiotemporal expression of lncRNAs in the developing and adult brain and the transcriptome alterations resulting from the loss of these lncRNA loci. We show that several lncRNAs are differentially expressed both in time and space, with some presenting highly restricted expression in only selected brain regions. We further demonstrate altered regulation of genes for a large variety of cellular pathways and processes upon deletion of the lncRNA loci. Finally, we found that 4 of the 13 lncRNAs significantly affect the expression of several neighboring protein-coding genes in a cis-like manner. By providing insight into the endogenous expression patterns and the transcriptional perturbations caused by deletion of the lncRNA locus in the developing and postnatal mammalian brain, these data provide a resource to facilitate future examination of the specific functional relevance of these genes in neural development, brain function, and disease.
PLOS Biology | 2008
Martin Sauvageau; Guy Sauvageau
Overexpression of Polycomb group genes is often associated with cancer development, whereas complete deletion results in loss of stem cell activity. New studies show that partial loss of function of Polycomb group genes enhances the activity of blood stem/progenitor cells.
Blood | 2013
Sonia Cellot; Kristin J Hope; Jalila Chagraoui; Martin Sauvageau; Eric Deneault; Tara MacRae; Nadine Mayotte; Brian T. Wilhelm; Josette Renée Landry; Stephen B. Ting; Jana Krosl; Keith Humphries; Alexander Thompson; Guy Sauvageau
Histone methylation is a dynamic and reversible process proposed to directly impact on stem cell fate. The Jumonji (JmjC) domain-containing family of demethylases comprises 27 members that target mono-, di-, and trimethylated lysine residues of histone (or nonhistone) proteins. To evaluate their role in regulation of hematopoietic stem cell (HSC) behavior, we performed an in vivo RNAi-based functional screen and demonstrated that Jarid1b and Jhdm1f play opposing roles in regulation of HSC activity. Decrease in Jarid1b levels correlated with an in vitro expansion of HSCs with preserved long-term in vivo lymphomyeloid differentiation potential. Through RNA sequencing analysis, Jarid1b knockdown was associated with increased expression levels of several HSC regulators (Hoxa7, Hoxa9, Hoxa10, Hes1, Gata2) and reduced levels of differentiation-associated genes. shRNA against Jhdmlf, in contrast, impaired hematopoietic reconstitution of bone marrow cells. Together, our studies identified Jarid1b as a negative regulator of HSC activity and Jhdmlf as a positive regulator of HSC activity.
Journal of Experimental Medicine | 2012
Olivier Hérault; Kristin J Hope; Eric Deneault; Nadine Mayotte; Jalila Chagraoui; Brian T. Wilhelm; Sonia Cellot; Martin Sauvageau; Miguel A. Andrade-Navarro; Josée Hébert; Guy Sauvageau
High levels of glutathione peroxidase 3 (GPx3) expression correlate with adverse prognosis in acute myeloid leukemia, and enhance activity of long-term repopulating hematopoietic stem cells in mice.