Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Scheringer is active.

Publication


Featured researches published by Martin Scheringer.


Risk Analysis | 2006

What Are the Sources of Exposure to Eight Frequently Used Phthalic Acid Esters in Europeans

Matthias Wormuth; Martin Scheringer; Meret Vollenweider; Konrad Hungerbühler

Phthalic acid esters (phthalates) are used as plasticizers in numerous consumer products, commodities, and building materials. Consequently, phthalates are found in human residential and occupational environments in high concentrations, both in air and in dust. Phthalates are also ubiquitous food and environmental contaminants. An increasing number of studies sampling human urine reveal the ubiquitous phthalate exposure of consumers in industrialized countries. At the same time, recent toxicological studies have demonstrated the potential of the most important phthalates to disturb the human hormonal system and human sexual development and reproduction. Additionally, phthalates are suspected to trigger asthma and dermal diseases in children. To find the important sources of phthalates in Europeans, a scenario-based approach is applied here. Scenarios representing realistic exposure situations are generated to calculate the age-specific range in daily consumer exposure to eight phthalates. The scenarios demonstrate that exposure of infant and adult consumers is caused by different sources in many cases. Infant consumers experience significantly higher daily exposure to phthalates in relation to their body weight than older consumers. The use of consumer products and different indoor sources dominate the exposure to dimethyl, diethyl, benzylbutyl, diisononyl, and diisodecyl phthalates, whereas food has a major influence on the exposure to diisobutyl, dibutyl, and di-2-ethylhexyl phthalates. The scenario-based approach chosen in the present study provides a link between the knowledge on emission sources of phthalates and the concentrations of phthalate metabolites found in human urine.


Environmental Health | 2013

Science and policy on endocrine disrupters must not be mixed: a reply to a “common sense” intervention by toxicology journal editors

Åke Bergman; Anna-Maria Andersson; Georg Becher; Martin van den Berg; Bruce Blumberg; Poul Bjerregaard; Carl-Gustav Bornehag; Riana Bornman; Ingvar Brandt; Jayne V. Brian; Stephanie C. Casey; Paul A. Fowler; Héloïse Frouin; Linda C. Giudice; Taisen Iguchi; Ulla Hass; Susan Jobling; Anders Juul; Karen A. Kidd; Andreas Kortenkamp; Monica Lind; Olwenn V. Martin; Derek C. G. Muir; Roseline Ochieng; Nicholas Olea; Leif Norrgren; Erik Ropstad; Peter S. Ross; Christina Rudén; Martin Scheringer

The “common sense” intervention by toxicology journal editors regarding proposed European Union endocrine disrupter regulations ignores scientific evidence and well-established principles of chemical risk assessment. In this commentary, endocrine disrupter experts express their concerns about a recently published, and is in our considered opinion inaccurate and factually incorrect, editorial that has appeared in several journals in toxicology. Some of the shortcomings of the editorial are discussed in detail. We call for a better founded scientific debate which may help to overcome a polarisation of views detrimental to reaching a consensus about scientific foundations for endocrine disrupter regulation in the EU.


Risk Analysis | 2008

Estimating consumer exposure to PFOS and PFOA.

David Trudel; Lea Horowitz; Matthias Wormuth; Martin Scheringer; Ian T. Cousins; Konrad Hungerbühler

Perfluorinated compounds have been used for more than 50 years as process aids, surfactants, and for surface protection. This study is a comprehensive assessment of consumer exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) from a variety of environmental and product-related sources. To identify relevant pathways leading to consumer exposure to PFOS and PFOA a scenario-based approach has been applied. Scenarios represent realistic situations where age- and gender-specific exposure occurs in the everyday life of consumers. We find that North American and European consumers are likely to experience ubiquitous and long-term uptake doses of PFOS and PFOA in the range of 3 to 220 ng per kg body weight per day (ng/kg(bw)/day) and 1 to 130 ng/kg(bw)/day, respectively. The greatest portion of the chronic exposure to PFOS and PFOA is likely to result from the intake of contaminated foods, including drinking water. Consumer products cause a minor portion of the consumer exposure to PFOS and PFOA. Of these, it is mainly impregnation sprays, treated carpets in homes, and coated food contact materials that may lead to consumer exposure to PFOS and PFOA. Children tend to experience higher total uptake doses (on a body weight basis) than teenagers and adults because of higher relative uptake via food consumption and hand-to-mouth transfer of chemical from treated carpets and ingestion of dust. The uptake estimates based on scenarios are within the range of values derived from blood serum data by applying a one-compartment pharmacokinetic model.


Environmental Science & Technology | 2012

Development of Environmental Fate Models for Engineered Nanoparticles—A Case Study of TiO2 Nanoparticles in the Rhine River

Antonia Praetorius; Martin Scheringer; Konrad Hungerbühler

For a proactive risk assessment of engineered nanoparticles (ENPs) it is imperative to derive predicted environmental concentration (PEC) values for ENPs in different environmental compartments; PECs can then be compared to effect thresholds. From the basis of established multimedia environmental fate models for organic pollutants, we develop a new concept of environmental fate modeling for ENPs with process descriptions based on the specific properties of ENPs. Our new fate modeling framework is highly flexible and can be adjusted to different ENPs and various environmental settings. As a first case study, the fate and transport of TiO(2) NPs in the Rhine River is investigated. Predicted TiO(2) NP concentrations lie in the ng/L range in the water compartment and mg/kg in the sediment, which represents the main reservoir for the nanoparticles. We also find that a significant downstream transport of ENPs is possible. A fundamental process, the heteroaggregation between TiO(2) NPs and suspended particulate matter (SPM), is analyzed in more detail. Our modeling results demonstrate the importance of both the SPM properties (concentration, size, density) as well as the affinity of TiO(2) NPs and SPM, characterized by the attachment efficiency, α(het-agg), on the transport potential of ENPs in a surface water system.


Environment International | 2014

Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources.

Zhanyun Wang; Ian T. Cousins; Martin Scheringer; Robert C. Buck; Konrad Hungerbühler

We quantify global emissions of C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues during the life-cycle of products based on perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctane sulfonyl fluoride (POSF), and fluorotelomer compounds. We estimate emissions of 2610-21400 tonnes of C4-C14 PFCAs in the period from 1951 to 2015, and project 20-6420 tonnes to be emitted from 2016 to 2030. The global annual emissions steadily increased in the period 1951-2002, followed by a decrease and then another increase in the period 2002-2012. Releases from fluoropolymer production contributed most to historical PFCA emissions (e.g. 55-83% in 1951-2002). Since 2002, there has been a geographical shift of industrial sources (particularly fluoropolymer production sites) from North America, Europe and Japan to emerging Asian economies, especially China. Sources differ between PFCA homologues, sometimes considerably, and the relative contributions of each source change over time. For example, whereas 98-100% of historical (1951-2002) PFOA emissions are attributed to direct releases during the life-cycle of products containing PFOA as ingredients or impurities, a much higher historical contribution from PFCA precursor degradation is estimated for some other homologues (e.g. 9-78% for PFDA). We address the uncertainties of the PFCA emissions by defining a lower and a higher emission scenario, which differ by approximately a factor of eight.


Environmental Science & Technology | 2010

Past, Present, and Future Controls on Levels of Persistent Organic Pollutants in the Global Environment

Luca Nizzetto; Matthew MacLeod; Katrine Borgå; Ana Cabrerizo; Jordi Dachs; Antonio Di Guardo; Davide Ghirardello; Kaj M. Hansen; Andrew Jarvis; Anders Lindroth; Bernard Ludwig; Dt Monteith; Judith A. Perlinger; Martin Scheringer; Luitgard Schwendenmann; Kirk T. Semple; Lukas Y. Wick; Gan Zhang; Kevin C. Jones

Understanding the legacy of persistent organic pollutants requires studying the transition from primary to secondary source control.


Environmental Health Perspectives | 2010

Intrinsic Human Elimination Half-Lives of Polychlorinated Biphenyls Derived from the Temporal Evolution of Cross-Sectional Biomonitoring Data from the United Kingdom

Roland Ritter; Martin Scheringer; Matthew MacLeod; Claudia Moeckel; Kevin C. Jones; Konrad Hungerbühler

Background Most empirical estimates of human elimination kinetics for persistent chemicals reflect apparent elimination half-lives that represent the aggregated effect of intrinsic elimination, ongoing exposure, and changes in body weight. However, estimates of intrinsic elimination at background levels are required for risk assessments for the general population. Objective To estimate intrinsic human elimination half-lives at background levels for nine polychlorinated biphenyl (PCB) congeners, we used a novel approach based on population data. Methods We used a population pharmacokinetic model to interpret two sets of congener-specific cross-sectional age–concentration biomonitoring data of PCB concentrations measured in lipid and blood samples that were collected from 229 individuals in 1990 and 2003. Our method is novel because it exploits information about changes in concentration in the human population along two dimensions: age and calendar time. Results Our approach extracted information about both elimination kinetics and exposure trends from biomonitoring data. The longest intrinsic human elimination half-lives estimated in this study are 15.5 years for PCB‐170, 14.4 years for PCB‐153, and 11.5 years for PCB‐180. Conclusions Our results are further evidence that a maximum intrinsic elimination half-life for persistent chemicals such as PCBs exists and is approximately 10–15 years. A clear conceptual distinction between apparent and intrinsic half-lives is required to reduce the uncertainty in elimination half-lives of persistent chemicals. The method presented here estimates intrinsic elimination half-lives and the exposure trends of persistent pollutants using cross-sectional data available from a large and growing number of biomonitoring programs.


Risk Analysis | 2010

Bisphenol A: How the Most Relevant Exposure Sources Contribute to Total Consumer Exposure

Natalie von Goetz; Matthias Wormuth; Martin Scheringer; Konrad Hungerbühler

Bisphenol A (BPA) is an endocrine disrupting chemical that is found in human urine throughout industrial societies around the globe. Consumer exposure pathways to BPA include packaged food, household dust, air, and dental fillings. To date, information on the relative contribution of the different pathways to total consumer exposure is lacking, but is key for managing substance-associated risks. We investigated the relative contributions of the pathways known to be most relevant for nine different consumer groups. Our results suggest that the most important pathways for infants and children are the use of polycarbonate (PC) baby bottles and for adults and teenagers the consumption of canned food. Dental surgery can also considerably contribute over a short time directly after the surgery. For infants fed with PC baby bottles with mean dose rates of 0.8 microg/kg(bw)/d the highest exposure dose rate was calculated. This dose rate is far below the tolerable daily intake of 50 microg/kg(bw)/d. However, it is of the same order of magnitude as recently reported concentrations that caused low-dose health effects in rodents. We find a pattern of falling exposure levels with rising age that is supported by urinary concentrations of BPA available for selected consumer groups. Similarly, the exposure levels we predict are confirmed by the levels reported in these studies.


Environmental Science & Technology | 2009

Blast from the Past: Melting Glaciers as a Relevant Source for Persistent Organic Pollutants

Christian Bogdal; Peter Schmid; Markus Zennegg; Flavio S. Anselmetti; Martin Scheringer; Konrad Hungerbühler

In this study, the hypothesis that melting Alpine glaciers may represent a secondary source of persistent organic chemicals is investigated. To this end, a dated sediment core from a glacier-fed lake (Lake Oberaar, Switzerland) was analyzed for a wide range of persistent organic pollutants, organochlorine pesticides, and synthetic musk fragrances. Input fluxes of all organochlorines increased in the 1950s, peaked in the 1960s-1970s, and decreased again to low levels in the 1980s-1990s. This observation reflects the emission history of these compounds and technical improvements and regulations leading to reduced emissions some decades ago. The input of synthetic musks remained at a high level in the 1950s-1990s, which is consistent with their relatively constant production throughout the second half of the 20th century. Since the late 1990s, input of all compound classes into the high-Alpine Lake Oberaar has increased sharply. Currently, input fluxes of organochlorines are similar to or even higher than in the 1960s-1970s. This second peak supports the hypothesis that there is a relevant release of persistent organic chemicals from melting Alpine glaciers. Considering ongoing global warming and accelerated massive glacier melting predicted for the future, our study indicates the potential for dire environmental impacts due to pollutants delivered into pristine mountainous areas.


Chemosphere | 2008

Estimating the contribution of precursor compounds in consumer exposure to PFOS and PFOA

Robin Vestergren; Ian T. Cousins; David Trudel; Matthias Wormuth; Martin Scheringer

The exposure of humans to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) was quantified with emphasis on assessing the relative importance of metabolic transformation of precursor compounds. A Scenario-Based Risk Assessment (SceBRA) approach was used to model the exposure to these compounds from a variety of different pathways, the uptake into the human body and resulting daily doses. To capture the physiological and behavioral differences of age and gender, the exposure and resulting doses for seven consumer groups were calculated. The estimated chronic doses of a general population of an industrialized country range from 3.9 to 520 ng/(kg day) and 0.3 to 140 ng/(kg day) for PFOS and PFOA, respectively. The relative importance of precursor-based doses of PFOS and PFOA was estimated to be 2-5% and 2-8% in an intermediate scenario and 60-80% and 28-55% in a high-exposure scenario. This indicates that sub groups of the population may receive a substantial part of the PFOS and PFOA doses from precursor compounds, even though they are of low importance for the general population. Similar to a preceding study, uptake of perfluorinated acids from contaminated food and drinking water was identified as the most important pathway of exposure for the general population. The biotransformation yields of telomer-based precursors and to a lesser extent perfluorooctanesulfonylfluoride-based precursors were identified as influential parameters in the uncertainty analysis. Fast food consumption and fraction of food packaging paper treated with PFCs were influential parameters for determining the doses of PFOA.

Collaboration


Dive into the Martin Scheringer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Bogdal

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathrin Fenner

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Schmid

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge