Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Schicht is active.

Publication


Featured researches published by Martin Schicht.


Investigative Ophthalmology & Visual Science | 2014

Ultrastructural changes associated with dexamethasone-induced ocular hypertension in mice.

Darryl R. Overby; Jacques Bertrand; Ozan-Yüksel Tektas; Alexandra Boussommier-Calleja; Martin Schicht; C. Ross Ethier; David F. Woodward; W. Daniel Stamer; Elke Lütjen-Drecoll

PURPOSE To determine whether dexamethasone (DEX)-induced ocular hypertension (OHT) in mice mimics the hallmarks of steroid-induced glaucoma (SIG) in humans, including reduced conventional outflow facility (C), increased extracellular matrix (ECM), and myofibroblasts within the outflow pathway. METHODS Osmotic mini-pumps were implanted subcutaneously into C57BL/6J mice for systemic delivery of DEX (3-4 mg/kg/d, n = 31 mice) or vehicle (n = 28). IOP was measured weekly by rebound tonometry. After 3 to 4 weeks, mice were euthanized and eyes enucleated for ex vivo perfusion to measure C, for electron microscopy to examine the trabecular meshwork (TM) and Schlemms canal (SC), or for immunohistochemistry to examine type IV collagen and α-smooth muscle actin. The length of basement membrane material (BMM) was measured along the anterior-posterior extent of SC by electron microscopy. Ultrastructural changes in BMM of DEX-treated mice were compared against archived human SIG specimens. RESULTS Dexamethasone increased IOP by 2.6 ± 1.6 mm Hg (mean ± SD) over 3 to 4 weeks and decreased C by 52% ± 17% versus controls. Intraocular pressure elevation correlated with decreased C. Dexamethasone treatment led to increased fibrillar material in the TM, plaque-like sheath material surrounding elastic fibers, and myofibroblasts along SC outer wall. The length of BMM underlying SC was significantly increased in mice with DEX and in humans with SIG, and in mice decreased C correlated with increased BMM. CONCLUSIONS Dexamethasone-induced OHT in mice mimics hallmarks of human SIG within 4 weeks of DEX treatment. The correlation between reduced C and newly formed ECM motivates further study using DEX-treated mice to investigate the pathogenesis of conventional outflow obstruction in glaucoma.


Annals of Anatomy-anatomischer Anzeiger | 2013

Schirmer strip vs. capillary tube method: Non-invasive methods of obtaining proteins from tear fluid

Andreas Posa; Lars Bräuer; Martin Schicht; Fabian Garreis; Stephanie Beileke; Friedrich Paulsen

Human tear fluid is a complex mixture containing over 500 solute proteins, lipids, electrolytes, mucins, metabolites, hormones and desquamated epithelial cells as well as foreign substances from the ambient air. Little is known to date about the function of most tear components. The efficient and gentle collection of tear fluid facilitates closer investigation of these matters. The objective of the present paper was to compare two commonly used methods of obtaining tear fluid, the capillary tube and Schirmer strip methods, in terms of usefulness in molecular biological investigation of tear film. The comparative protein identification methods Bradford and Western Blot were used in the analyses to this end. The surfactant proteins (SP) A-D recently described as present on the eye surface were selected as the model proteins. Both methods feature sufficient uptake efficiency for proteins in or extraction from the sampling means used (capillary tube/Schirmer strip). The total protein concentration can be determined and the proteins in the tears can be detected - besides the hydrophilic SP-A and D also the non-water-soluble proteins of smaller size such as SP-B and C. Thus both methods afford a suitable basis for comparative analysis of the physiological processes in the tear fluid of healthy and diseased subjects. On the whole, the Schirmer strip has several advantages over the capillary tube.


Investigative Ophthalmology & Visual Science | 2014

The Structure of the Trabecular Meshwork, Its Connections to the Ciliary Muscle, and the Effect of Pilocarpine on Outflow Facility in Mice

Darryl R. Overby; Jacques Bertrand; Martin Schicht; Friedrich Paulsen; W. Daniel Stamer; Elke Lütjen-Drecoll

PURPOSE To determine the connections between the ciliary muscle (CM), trabecular meshwork (TM), and Schlemms canal (SC) and their innervations that allows CM contraction (by pilocarpine) to influence conventional outflow in mice. METHODS Sequential sections and whole mounts of murine corneoscleral angles were stained for elastin, α-smooth muscle actin (αSMA), vesicular acetylcholine transporter (VAChT), neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), and tyrosine hydroxylase (TH). Elastic (EL) fibers between the CM, TM, and SC were examined in ultrathin, sequential sections from different planes. The effect of pilocarpine (100 μM) on conventional outflow facility was measured by perfusion of enucleated mouse eyes. RESULTS The mouse TM contains a three-dimensional (3D) net of EL fibers connecting the inner wall of SC to the cornea anteriorly, the ciliary body (CB) internally and the choroid and CM posteriorly. The CM bifurcates near the posterior TM, extending outer tendons to the juxtacanalicular tissue and inner wall of SC and internal connections to the lamellated TM and CB. Ciliary muscle and lamellated TM cells stain with αSMA and are innervated by VAChT-containing nerve fibers, without TH, VIP, or nNOS. Pilocarpine doubled outflow facility. CONCLUSIONS Mouse eyes resemble primate eyes not only by their well developed SC and TM, but also by their 3D EL net tethering together the TM and SC inner wall and by the tendinous insertion of the CM into this net. The increase in outflow facility following cholinergic stimulation in mice, as in primates, supports using mice for studies of aqueous humor dynamics and glaucoma.


American Journal of Rhinology & Allergy | 2013

Detection of surfactant proteins A, B, C, and D in human nasal mucosa and their regulation in chronic rhinosinusitis with polyps.

Martin Schicht; Stephan Knipping; Roman Hirt; Stephanie Beileke; Saadettin Sel; Friedrich Paulsen; Lars Bräuer

Backround The nasal mucosa is characterized by a multirow high prismatic ciliated epithelium representing the first barrier of the immune defense system against microbial and other environmental pathogenic influences. A number of nonspecific defense mechanisms, including the presence of lactoferrin, peroxidases, proteases, interferons, and lysozymes in nasal secretions, act to counter inflammatory processes. The surfactant proteins (SPs) known from the lungs are important components of the innate immune system. They also influence the rheology of fluids and reduce the surface tension of gas–fluid interphases. The objective of this study was to investigate the protein expression of all four SPs. A specific aim was detection and characterization of SP-C, which had previously not been confirmed in human nasal mucosa. Methods The expression of mRNA for SP-A, -B, -C and -D was investigated using reverse transcriptase polymerase chain reaction on samples of both healthy nasal mucosa and nasal mucosa altered by inflammatory processes (allergic rhinitis and chronic rhinosinusitis). The distribution of all four proteins was determined with monoclonal antibodies using Western blot analysis as well as immunohistochemical methods. Results The results show that all four SPs, including SP-C not detected before this, are nasal mucosa components. A shift was also observed in the expression behavior of the SP-A, -B, and -D in nasal mucosa with inflammatory changes. Conclusion Based on these results, SPs appear to have an important function in immunologic and rheological process of the nasal mucosa and support the prospective therapeutic use of liposomal nasal sprays.


Arthritis & Rheumatism | 2010

Trefoil factor 3 is induced during degenerative and inflammatory joint disease, activates matrix metalloproteinases, and enhances apoptosis of articular cartilage chondrocytes

Sophie Rösler; Tobias Haase; Horst Claassen; Ute Schulze; Martin Schicht; Dagmar Riemann; Jörg Brandt; D. Wohlrab; Brigitte Müller-Hilke; Mary B. Goldring; Saadettin Sel; Deike Varoga; Fabian Garreis; Friedrich Paulsen

OBJECTIVE Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a member of a family of protease-resistant peptides containing a highly conserved motif with 6 cysteine residues. Recent studies have shown that TFF3 is expressed in injured cornea, where it plays a role in corneal wound healing, but not in healthy cornea. Since cartilage and cornea have similar matrix properties, we undertook the present study to investigate whether TFF3 could induce anabolic functions in diseased articular cartilage. METHODS We used reverse transcriptase-polymerase chain reaction, Western blot analysis, and immunohistochemistry to measure the expression of TFF3 in healthy articular cartilage, osteoarthritis (OA)-affected articular cartilage, and septic arthritis-affected articular cartilage and to assess the effects of cytokines, bacterial products, and bacterial supernatants on TFF3 production. The effects of TFF3 on matrix metalloproteinase (MMP) production were measured by enzyme-linked immunosorbent assay, and effects on chondrocyte apoptosis were studied by caspase assay and annexin V assay. RESULTS Trefoil factors were not expressed in healthy human articular cartilage, but expression of TFF3 was highly up-regulated in the cartilage of patients with OA. These findings were confirmed in animal models of OA and septic arthritis, as well as in tumor necrosis factor alpha- and interleukin-1beta-treated primary human articular chondrocytes, revealing induction of Tff3/TFF3 under inflammatory conditions. Application of the recombinant TFF3 protein to cultured chondrocytes resulted in increased production of cartilage-degrading MMPs and increased chondrocyte apoptosis. CONCLUSION In this study using articular cartilage as a model, we demonstrated that TFF3 supports catabolic functions in diseased articular cartilage. These findings widen our knowledge of the functional spectrum of TFF peptides and demonstrate that TFF3 is a multifunctional trefoil factor with the ability to link inflammation with tissue remodeling processes in articular cartilage. Moreover, our data suggest that TFF3 is a factor in the pathogenesis of OA and septic arthritis.


PLOS ONE | 2013

The Detection of Surfactant Proteins A, B, C and D in the Human Brain and Their Regulation in Cerebral Infarction, Autoimmune Conditions and Infections of the CNS

Stefan Schob; Martin Schicht; Saadettin Sel; Dankwart Stiller; Alexander S. Kekulé; Friedrich Paulsen; Erik Maronde; Lars Bräuer

Surfactant proteins (SP) have been studied intensively in the respiratory system. Surfactant protein A and surfactant protein D are proteins belonging to the family of collectins each playing a major role in the innate immune system. The ability of surfactant protein A and surfactant protein D to bind various pathogens and facilitate their elimination has been described in a vast number of studies. Surfactant proteins are very important in modulating the hosts inflammatory response and participate in the clearance of apoptotic cells. Surfactant protein B and surfactant protein C are proteins responsible for lowering the surface tension in the lungs. The aim of this study was an investigation of expression of surfactant proteins in the central nervous system to assess their specific distribution patterns. The second aim was to quantify surfactant proteins in cerebrospinal fluid of healthy subjects compared to patients suffering from different neuropathologies. The expression of mRNA for the surfactant proteins was analyzed with RT-PCR done with samples from different parts of the human brain. The production of the surfactant proteins in the brain was verified using immunohistochemistry and Western blot. The concentrations of the surfactant proteins in cerebrospinal fluid from healthy subjects and patients suffering from neuropathologic conditions were quantified using ELISA. Our results revealed that surfactant proteins are present in the central nervous system and that the concentrations of one or more surfactant proteins in healthy subjects differed significantly from those of patients affected by central autoimmune processes, CNS infections or cerebral infarction. Based on the localization of the surfactant proteins in the brain, their different levels in normal versus pathologic samples of cerebrospinal fluid and their well-known functions in the lungs, it appears that the surfactant proteins may play roles in host defense of the brain, facilitation of cerebrospinal fluid secretion and maintenance of the latters rheological properties.


Annals of Anatomy-anatomischer Anzeiger | 2011

C-28/I2 and T/C-28a2 chondrocytes as well as human primary articular chondrocytes express sex hormone and insulin receptors--Useful cells in study of cartilage metabolism.

Horst Claassen; Martin Schicht; Jörg Brandt; Katharina Reuse; Ricarda Schädlich; Mary B. Goldring; Saskia S. Guddat; Annett Thate; Friedrich Paulsen

Sex hormones and insulin have been implicated in articular cartilage metabolism. To supplement previous findings on the regulation of matrix synthesis with 17β-estradiol and insulin and to find a possible model to study cartilage metabolism in vitro, we evaluated the expression of estrogen receptors α and β (ERα, ERβ), androgen receptor (AR) and insulin receptor (IR), in immortalized C-28/I2 and T/C-28a2 chondrocytes and in human primary articular cartilage cells. Chondrocytes were treated with increasing concentrations of 17β-estradiol, dihydrotestosterone or insulin and analyzed by means of RT-PCR and Western blotting. Both cell lines as well as human articular chondrocytes expressed ER α and β, AR and IR at mRNA and protein levels. In immortalized C-28/I2 chondrocytes, we showed that increasing concentrations of 17β-estradiol diminished the 95kDa band of IR. Since 17β-estradiol suppresses insulin-induced proline incorporation and type II collagen synthesis, as we have previously demonstrated, our findings give the first clue that 17β-estradiol may have negative effects on cartilage anabolism triggered by insulin during hormonal imbalance. Compared to chondrocytes cultured without hormones, immunostaining for ERα/β, AR and IR was decreased in both cell lines after incubation of cells with the receptor-specific hormones. It can be assumed that C-28/I2 and T/C-28a2 chondrocytes interact with the respective hormones. Our findings provide a reproducible model for investigating sex hormone and insulin receptors, which are present in low concentrations in articular chondrocytes, in the tissue-specific context of cartilage metabolism.


PLOS ONE | 2012

''SP-G'', a Putative New Surfactant Protein - Tissue Localization and 3D Structure

Felix Rausch; Martin Schicht; Friedrich Paulsen; Ivan Ngueya; Lars Bräuer; Wolfgang Brandt

Surfactant proteins (SP) are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G) was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class.


European Respiratory Journal | 2014

SFTA3, a novel protein of the lung: three-dimensional structure, characterisation and immune activation

Martin Schicht; Felix Rausch; Susetta Finotto; Martina Mathews; Anja Mattil; Melanie Schubert; Beate Koch; Maximilian Traxdorf; Christopher Bohr; Dieter Worlitzsch; Wolfgang Brandt; Fabian Garreis; Saadettin Sel; Friedrich Paulsen; Lars Bräuer

The lung constantly interacts with numerous pathogens. Thus, complex local immune defence mechanisms are essential to recognise and dispose of these intruders. This work describes the detection, characterisation and three-dimensional structure of a novel protein of the lung (surfactant-associated protein 3 (SFTA3/SP-H)) with putative immunological features. Bioinformatics, biochemical and immunological methods were combined to elucidate the structure and function of SFTA3. The tissue-specific detection and characterisation was performed by using electron microscopy as well as fluorescence imaging. Three-dimensional structure generation and analysis led to the development of specific antibodies and, as a consequence, to the localisation of a novel protein in human lung under consideration of cystic fibrosis, asthma and sepsis. In vitro experiments revealed that lipopolysaccharide induces expression of SFTA3 in the human lung alveolar type II cell line A549. By contrast, the inflammatory cytokines interleukin (IL)-1&bgr; and IL-23 inhibit expression of SFTA3 in A549. Sequence- and structure-based prediction analysis indicated that the novel protein is likely to belong to the family of lung surfactant proteins. The results suggest that SFTA3 is an immunoregulatory protein of the lung with relevant protective functions during inflammation at the mucosal sites. SFTA3: a novel lung protein with putative protective and immunological functions during inflammation in lung diseases http://ow.ly/tsnne


Progress in Histochemistry and Cytochemistry | 2011

Impact of sex hormones, insulin, growth factors and peptides on cartilage health and disease.

Horst Claassen; Martin Schicht; Friedrich Paulsen

Sex hormones contribute to the pathogenesis of osteoarthritis (OA) in both sexes. OA is normally not seen in pre-menopausal women, whereas men may develop the disease as early as the 30th year of life. OA also shows increased incidence in association with diseases such as diabetes mellitus. Recent years have seen characterization of essential components of a functional endocrinal network in the articular cartilage comprising not only sex hormones but apparently insulin, growth factors and various peptides as well. In this review, we summarize the latest information regarding the influence of sex hormones, insulin, growth factors and some peptides on healthy cartilage and their involvement in osteoarthritis. Both animal and human research data were considered. The results are presented in an information matrix that identifies what is known, with supporting references, and identifies areas for further investigation.

Collaboration


Dive into the Martin Schicht's collaboration.

Top Co-Authors

Avatar

Friedrich Paulsen

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Lars Bräuer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Fabian Garreis

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Schröder

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Ulrike Hampel

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antje Schröder

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge