Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Schürmann is active.

Publication


Featured researches published by Martin Schürmann.


Metabolic Engineering | 2014

Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.

Tamara Wriessnegger; Peter Augustin; Matthias Engleder; Erich Leitner; Monika Müller; Iwona Kaluzna; Martin Schürmann; Daniel Mink; Günther Zellnig; Helmut Schwab; Harald Pichler

The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources.


Catalysis Science & Technology | 2013

The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC)

Hans-Peter Meyer; Eric Eichhorn; Steven Paul Hanlon; Stephan Lütz; Martin Schürmann; Roland Wohlgemuth; Raffaella Coppolecchia

The potential of biotechnology by means of biocatalysis or biosynthesis in organic synthesis is far from being fully exploited. For this reason a group of life science companies active in pharmaceuticals, flavour and fragrance, vitamin and fine chemicals businesses describe some examples of the use of enzymes in industrial organic synthesis and discuss why enzymes are still the exception rather than the rule in organic synthesis.


ACS Synthetic Biology | 2016

Metabolic Engineering toward Sustainable Production of Nylon-6

Stefan Turk; Wigard P. Kloosterman; Dennis K. Ninaber; Karin P. A. M. Kolen; Julia Knutova; Erwin Suir; Martin Schürmann; Petronella Catharina Raemakers-Franken; Monika Müller; Stefaan de Wildeman; Leonie M. Raamsdonk; Ruud van der Pol; Liang Wu; Margarida Temudo; Rob van der Hoeven; Michiel Akeroyd; Roland van der Stoel; Henk Noorman; Roel A. L. Bovenberg; Axel C. Trefzer

Nylon-6 is a bulk polymer used for many applications. It consists of the non-natural building block 6-aminocaproic acid, the linear form of caprolactam. Via a retro-synthetic approach, two synthetic pathways were identified for the fermentative production of 6-aminocaproic acid. Both pathways require yet unreported novel biocatalytic steps. We demonstrated proof of these bioconversions by in vitro enzyme assays with a set of selected candidate proteins expressed in Escherichia coli. One of the biosynthetic pathways starts with 2-oxoglutarate and contains bioconversions of the ketoacid elongation pathway known from methanogenic archaea. This pathway was selected for implementation in E. coli and yielded 6-aminocaproic acid at levels up to 160 mg/L in lab-scale batch fermentations. The total amount of 6-aminocaproic acid and related intermediates generated by this pathway exceeded 2 g/L in lab-scale fed-batch fermentations, indicating its potential for further optimization toward large-scale sustainable production of nylon-6.


PLOS ONE | 2014

Crystal structure of an (R)-selective ω-transaminase from Aspergillus terreus.

Andrzej Łyskowski; Christian C. Gruber; Georg Steinkellner; Martin Schürmann; Helmut Schwab; Karl Gruber; Kerstin Steiner

Chiral amines are important building blocks for the synthesis of pharmaceutical products, fine chemicals, and agrochemicals. ω-Transaminases are able to directly synthesize enantiopure chiral amines by catalysing the transfer of an amino group from a primary amino donor to a carbonyl acceptor with pyridoxal 5′-phosphate (PLP) as cofactor. In nature, (S)-selective amine transaminases are more abundant than the (R)-selective enzymes, and therefore more information concerning their structures is available. Here, we present the crystal structure of an (R)-ω-transaminase from Aspergillus terreus determined by X-ray crystallography at a resolution of 1.6 Å. The structure of the protein is a homodimer that displays the typical class IV fold of PLP-dependent aminotransferases. The PLP-cofactor observed in the structure is present in two states (i) covalently bound to the active site lysine (the internal aldimine form) and (ii) as substrate/product adduct (the external aldimine form) and free lysine. Docking studies revealed that (R)-transaminases follow a dual binding mode, in which the large binding pocket can harbour the bulky substituent of the amine or ketone substrate and the α-carboxylate of pyruvate or amino acids, and the small binding pocket accommodates the smaller substituent.


ChemBioChem | 2015

Structure-Based Mechanism of Oleate Hydratase from Elizabethkingia Meningoseptica.

Matthias Engleder; Tea Pavkov-Keller; Anita Emmerstorfer; Altijana Hromic; Sabine Schrempf; Georg Steinkellner; Tamara Wriessnegger; Erich Leitner; Gernot A. Strohmeier; Iwona Kaluzna; Daniel Mink; Martin Schürmann; Silvia Wallner; Peter Macheroux; Karl Gruber; Harald Pichler

Hydratases provide access to secondary and tertiary alcohols by regio‐ and/or stereospecifically adding water to carbon‐carbon double bonds. Thereby, hydroxy groups are introduced without the need for costly cofactor recycling, and that makes this approach highly interesting on an industrial scale. Here we present the first crystal structure of a recombinant oleate hydratase originating from Elizabethkingia meningoseptica in the presence of flavin adenine dinucleotide (FAD). A structure‐based mutagenesis study targeting active site residues identified E122 and Y241 as crucial for the activation of a water molecule and for protonation of the double bond, respectively. Moreover, we also observed that two‐electron reduction of FAD results in a sevenfold increase in the substrate hydration rate. We propose the first reaction mechanism for this enzyme class that explains the requirement for the flavin cofactor and the involvement of conserved amino acid residues in this regio‐ and stereoselective hydration.


Computational and structural biotechnology journal | 2014

COFACTOR SPECIFICITY ENGINEERING OF STREPTOCOCCUS MUTANS NADH OXIDASE 2 FOR NAD(P)+ REGENERATION IN BIOCATALYTIC OXIDATIONS

Barbara Petschacher; Nicole Staunig; Monika Müller; Martin Schürmann; Daniel Mink; Stefaan de Wildeman; Karl Gruber; Anton Glieder

Soluble water-forming NAD(P)H oxidases constitute a promising NAD(P)+ regeneration method as they only need oxygen as cosubstrate and produce water as sole byproduct. Moreover, the thermodynamic equilibrium of O2 reduction is a valuable driving force for mostly energetically unfavorable biocatalytic oxidations. Here, we present the generation of an NAD(P)H oxidase with high activity for both cofactors, NADH and NADPH. Starting from the strictly NADH specific water-forming Streptococcus mutans NADH oxidase 2 several rationally designed cofactor binding site mutants were created and kinetic values for NADH and NADPH conversion were determined. Double mutant 193R194H showed comparable high rates and low K m values for NADPH (k cat 20 s-1, K m 6 µM) and NADH (k cat 25 s-1, K m 9 µM) with retention of 70% of wild type activity towards NADH. Moreover, by screening of a SeSaM library S. mutans NADH oxidase 2 variants showing predominantly NADPH activity were found, giving further insight into cofactor binding site architecture. Applicability for cofactor regeneration is shown for coupling with alcohol dehydrogenase from Sphyngobium yanoikuyae for 2-heptanone production.


Biotechnology Journal | 2015

Over‐expression of ICE2 stabilizes cytochrome P450 reductase in Saccharomyces cerevisiae and Pichia pastoris

Anita Emmerstorfer; Miriam Wimmer-Teubenbacher; Tamara Wriessnegger; Erich Leitner; Monika Müller; Iwona Kaluzna; Martin Schürmann; Daniel Mink; Günther Zellnig; Helmut Schwab; Harald Pichler

Membrane-anchored cytochrome P450 enzymes (CYPs) are a versatile and interesting class of enzymes for industrial applications, as they are capable of regio- and stereoselectively hydroxylating hydrophobic molecules. However, CYP activity requires sufficient levels of suitable cytochrome P450 reductases (CPRs) for regeneration of catalytic capacity, which is a bottleneck in many industrial applications. Searching for positive effectors of membrane-anchored CYP/CPR function, we transformed and screened selected strains from a Saccharomyces cerevisiae knockout collection for Hyoscyamus muticus premnaspirodiene oxygenase (HPO; CYP) and Arabidopsis thaliana CPR (AtCPR) expression levels, as well as for activity towards (+)-valencene. We found that in cells lacking the type III membrane protein Ice2p, AtCPR was destabilized. Remarkably, over-expression of ICE2 improved (+)-valencene hydroxylation to trans-nootkatol by 40-50%, both in resting cells and in vivo. Time-resolved immunoblot analysis and cytochrome c reductase activity assays revealed that Ice2 up-regulation stabilized AtCPR levels and activity over extended periods of bioconversion. To underscore that we had identified a novel positive effector of recombinant CYP/CPR function, we confirmed the beneficial effect of ICE2 over-expression for two further CYP/CPR combinations and the alternative host Pichia pastoris. Thus, we propose Ice2 up-regulation as a general tool for improving the applications of recombinant CYPs in yeasts.


PLOS ONE | 2015

The Crystal Structure of D-Threonine Aldolase from Alcaligenes xylosoxidans Provides Insight into a Metal Ion Assisted PLP-Dependent Mechanism

Michael K. Uhl; Gustav Oberdorfer; Georg Steinkellner; Lina Riegler-Berket; Daniel Mink; Friso van Assema; Martin Schürmann; Karl Gruber

Threonine aldolases catalyze the pyridoxal phosphate (PLP) dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs) is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various β-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs) have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA) at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the β-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor.


Chemcatchem | 2015

A Practical and Fast Method To Predict the Thermodynamic Preference of ω‐Transaminase‐Based Transformations

Robert J. Meier; Maria T. Gundersen; John M. Woodley; Martin Schürmann

A simple, easy‐to‐use, and fast approach method is proposed and validated that can predict whether a transaminase reaction is thermodynamically unfavourable. This allowed us to deselect, in the present case, at least 50% of the reactions because they were thermodynamically unfavourable as confirmed by experiment. Once a larger data base is established, in silico screening of several new reactions (new target molecules) can easily be performed each day.


Fungal Genetics and Biology | 2016

Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions.

Tamara Wriessnegger; Sandra Moser; Anita Emmerstorfer-Augustin; Erich Leitner; Monika Müller; Iwona Kaluzna; Martin Schürmann; Daniel Mink; Harald Pichler

Cytochrome P450 enzymes (CYPs) play an essential role in the biosynthesis of various natural compounds by catalyzing regio- and stereospecific hydroxylation reactions. Thus, CYP activities are of great interest in the production of fine chemicals, pharmaceutical compounds or flavors and fragrances. Industrial applicability of CYPs has driven extensive research efforts aimed at improving the performance of these enzymes to generate robust biocatalysts. Recently, our group has identified CYP-mediated hydroxylation of (+)-valencene as a major bottleneck in the biosynthesis of trans-nootkatol and (+)-nootkatone in Pichia pastoris. In the current study, we aimed at enhancing CYP-mediated (+)-valencene hydroxylation by over-expressing target genes identified through transcriptome analysis in P. pastoris. Strikingly, over-expression of the DNA repair and recombination gene RAD52 had a distinctly positive effect on trans-nootkatol formation. Combining RAD52 over-expression with optimization of whole-cell biotransformation conditions, i.e. optimized media composition and cultivation at higher pH value, enhanced trans-nootkatol production 5-fold compared to the initial strain and condition. These engineering approaches appear to be generally applicable for enhanced hydroxylation of hydrophobic compounds in P. pastoris as confirmed here for two additional membrane-attached CYPs, namely the limonene-3-hydroxylase from Mentha piperita and the human CYP2D6.

Collaboration


Dive into the Martin Schürmann's collaboration.

Researchain Logo
Decentralizing Knowledge