Martin Setvin
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Setvin.
Science | 2013
Martin Setvin; Ulrich Johannes Aschauer; Philipp Scheiber; Ye-Fei Li; Weiyi Hou; Michael Schmid; Annabella Selloni; Ulrike Diebold
Oxide Chemistry Below the Surface Although metal oxides, such as titanium dioxide (TiO2), are used for catalytic oxidation reactions and photocatalysis, the O2 does not react directly with substrates. Vacancies in the surface region of the TiO2 rutile phase can transfer a negative charge to adsorbed O2 to create more reactive species. By contrast, in anatase—the phase associated with nanoscale TiO2 particles—subsurface vacancies form. Setvin et al. (p. 988) used a scanning tunneling microscopy tip to pull these vacancies to the surface in a niobiumdoped anatase crystal and followed the transformation of adsorbed O2− into a peroxo species and a bridging O2 dimer. Subsurface oxygen vacancies created at an anatase surface play a key role in forming a bridging oxygen (O2) dimer from adsorbed O2. Oxygen (O2) adsorbed on metal oxides is important in catalytic oxidation reactions, chemical sensing, and photocatalysis. Strong adsorption requires transfer of negative charge from oxygen vacancies (VOs) or dopants, for example. With scanning tunneling microscopy, we observed, transformed, and, in conjunction with theory, identified the nature of O2 molecules on the (101) surface of anatase (titanium oxide, TiO2) doped with niobium. VOs reside exclusively in the bulk, but we pull them to the surface with a strongly negatively charged scanning tunneling microscope tip. O2 adsorbed as superoxo (O2–) at fivefold-coordinated Ti sites was transformed to peroxo (O22–) and, via reaction with a VO, placed into an anion surface lattice site as an (O2)O species. This so-called bridging dimer also formed when O2 directly reacted with VOs at or below the surface.
Physical Review Letters | 2014
Martin Setvin; Cesare Franchini; Xianfeng Hao; Michael Schmid; Anderson Janotti; Merzuk Kaltak; Chris G. Van de Walle; Georg Kresse; Ulrike Diebold
A combination of scanning tunneling microscopy and spectroscopy and density functional theory is used to characterize excess electrons in TiO2 rutile and anatase, two prototypical materials with identical chemical composition but different crystal lattices. In rutile, excess electrons can localize at any lattice Ti atom, forming a small polaron, which can easily hop to neighboring sites. In contrast, electrons in anatase prefer a free-carrier state, and can only be trapped near oxygen vacancies or form shallow donor states bound to Nb dopants. The present study conclusively explains the differences between the two polymorphs and indicates that even small structural variations in the crystal lattice can lead to a very different behavior.
Science | 2014
Roland Bliem; E. McDermott; P. Ferstl; Martin Setvin; Oscar Gamba; Jiří Pavelec; M. A. Schneider; Michael Schmid; Ulrike Diebold; Peter Blaha; L. Hammer; Gareth S. Parkinson
Iron oxides play an increasingly prominent role in heterogeneous catalysis, hydrogen production, spintronics, and drug delivery. The surface or material interface can be performance-limiting in these applications, so it is vital to determine accurate atomic-scale structures for iron oxides and understand why they form. Using a combination of quantitative low-energy electron diffraction, scanning tunneling microscopy, and density functional theory calculations, we show that an ordered array of subsurface iron vacancies and interstitials underlies the well-known (2×2)R45° reconstruction of Fe3O4(001). This hitherto unobserved stabilization mechanism occurs because the iron oxides prefer to redistribute cations in the lattice in response to oxidizing or reducing environments. Many other metal oxides also achieve stoichiometry variation in this way, so such surface structures are likely commonplace. The surface reconstruction of magnetite is explained more accurately with the inclusion of subsurface cation vacancies. [Also see Perspective by Chambers] Stabilization of the surfaces of magnetite Accurate structures of iron oxide surfaces are important for understanding their role in catalysis, and, for oxides such as magnetite, applications in magnetism and spin physics. The accepted low-energy electron diffraction (LEED) structure for the surface of magnetite, in which the bulk surface termination undergoes an undulating distortion, has a relatively poor agreement with experiment. Bliem et al. show that the LEED structure is much more accurately described by a structure that includes subsurface cation vacancies and occupation of interstitial sites (see the Perspective by Chambers). Such cation redistribution occurs in many metal oxides and may play a role in their surface structures. Science, this issue p. 1215; see also p. 1186
Angewandte Chemie | 2014
Martin Setvin; Xianfeng Hao; Benjamin Daniel; Jiri Pavelec; Zbynek Novotny; Gareth S. Parkinson; Michael Schmid; Georg Kresse; Cesare Franchini; Ulrike Diebold
A combination of photoemission, atomic force, and scanning tunneling microscopy/spectroscopy measurements shows that excess electrons in the TiO2 anatase (101) surface are trapped at step edges. Consequently, steps act as preferred adsorption sites for O2 . In density functional theory calculations electrons localize at clean step edges, this tendency is enhanced by O vacancies and hydroxylation. The results show the importance of defects for the wide-ranging applications of titania.
Beilstein Journal of Nanotechnology | 2012
Zsolt Majzik; Martin Setvin; Andreas Bettac; Albrecht Feltz; V. Cháb; Pavel Jelínek
Summary We present the results of simultaneous scanning-tunneling and frequency-modulated dynamic atomic force microscopy measurements with a qPlus setup. The qPlus sensor is a purely electrical sensor based on a quartz tuning fork. If both the tunneling current and the force signal are to be measured at the tip, a cross-talk of the tunneling current with the force signal can easily occur. The origin and general features of the capacitive cross-talk will be discussed in detail in this contribution. Furthermore, we describe an experimental setup that improves the level of decoupling between the tunneling-current and the deflection signal. The efficiency of this experimental setup is demonstrated through topography and site-specific force/tunneling-spectroscopy measurements on the Si(111) 7×7 surface. The results show an excellent agreement with previously reported data measured by optical interferometric deflection.
Journal of the American Chemical Society | 2016
Martin Setvin; Ulrich Johannes Aschauer; Jan Hulva; Thomas Simschitz; Benjamin Daniel; Michael Schmid; Annabella Selloni; Ulrike Diebold
We have investigated the reaction between O2 and H2O, coadsorbed on the (101) surface of a reduced TiO2 anatase single crystal by scanning tunneling microscopy, density functional theory, temperature-programmed desorption, and X-ray photoelectron spectroscopy. While water adsorbs molecularly on the anatase (101) surface, the reaction with O2 results in water dissociation and formation of terminal OH groups. We show that these terminal OHs are the final and stable reaction product on reduced anatase. We identify OOH as a metastable intermediate in the reaction. The water dissociation reaction runs as long as the surface can transfer enough electrons to the adsorbed species; the energy balance and activation barriers for the individual reaction steps are discussed, depending on the number of electrons available. Our results indicate that the presence of donor dopants can significantly reduce activation barriers for oxygen reduction on anatase.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Martin Setvin; Jan Hulva; Gareth S. Parkinson; Michael Schmid; Ulrike Diebold
Significance Molecular oxygen is an inert species, unable to enter chemical reactions. Activation occurs through the acceptance of an extra electron; this catalytic step plays a major role in applications such as heterogeneous catalysis and fuel cells. It is also used by all living organisms. We show that the two different charge states of O2 can be easily distinguished by atomic force microscopy (AFM). We directly injected or removed electrons into/from the O2 molecule by the AFM tip, switching the O2 reactivity. These results open new possibilities for studying catalytic and photocatalytic processes. Activation of molecular oxygen is a key step in converting fuels into energy, but there is precious little experimental insight into how the process proceeds at the atomic scale. Here, we show that a combined atomic force microscopy/scanning tunneling microscopy (AFM/STM) experiment can both distinguish neutral O2 molecules in the triplet state from negatively charged (O2)− radicals and charge and discharge the molecules at will. By measuring the chemical forces above the different species adsorbed on an anatase TiO2 surface, we show that the tip-generated (O2)− radicals are identical to those created when (i) an O2 molecule accepts an electron from a near-surface dopant or (ii) when a photo-generated electron is transferred following irradiation of the anatase sample with UV light. Kelvin probe spectroscopy measurements indicate that electron transfer between the TiO2 and the adsorbed molecules is governed by competition between electron affinity of the physisorbed (triplet) O2 and band bending induced by the (O2)− radicals. Temperature–programmed desorption and X-ray photoelectron spectroscopy data provide information about thermal stability of the species, and confirm the chemical identification inferred from AFM/STM.
Physical Review B | 2013
Juan de la Figuera; Zbynek Novotny; Martin Setvin; Tijiang Liu; Zhiqiang Mao; Gong Chen; Alpha T. N’Diaye; Michael Schmid; Ulrike Diebold; Andreas K. Schmid; Gareth S. Parkinson
Effects of the Verwey transition on the (100) surface of magnetite were studied using scanning tunelling microscopy and spin polarized low-energy electron microsccopy. On cooling through the transition temperature Tv, the initially flat surface undergoes a roof-like distortion with a periodicity of ~0.5 um due to ferroelastic twinning within monoclinic domains of the low-temperature monoclinic structure. The monoclinic c axis orients in the surface plane, along the [001]c directions. At the atomic scale, the charge-ordered sqrt2xsqrt2R45 reconstruction of the (100) surface is unperturbed by the bulk transition, and is continuous over the twin boundaries. Time resolved low-energy electron microscopy movies reveal the structural transition to be first-order at the surface, indicating that the bulk transition is not an extension of the Verwey-like sqrt2xsqrt2R45 reconstruction. Although conceptually similar, the charge-ordered phases of the (100) surface and sub-Tv bulk of magnetite are unrelated phenomena.
Nano Letters | 2016
Luis A. Miccio; Martin Setvin; Moritz Müller; Mikel Abadia; Ignacio Piquero; Jorge Lobo-Checa; Frederik Schiller; Celia Rogero; Michael Schmid; Daniel Sánchez-Portal; Ulrike Diebold; J. Enrique Ortega
A vicinal rutile TiO2(110) crystal with a smooth variation of atomic steps parallel to the [1-10] direction was analyzed locally with STM and ARPES. The step edge morphology changes across the samples, from [1-11] zigzag faceting to straight [1-10] steps. A step-bunching phase is attributed to an optimal (110) terrace width, where all bridge-bonded O atom vacancies (Obr vacs) vanish. The [1-10] steps terminate with a pair of 2-fold coordinated O atoms, which give rise to bright, triangular protrusions (St) in STM. The intensity of the Ti 3d-derived gap state correlates with the sum of Obr vacs plus St protrusions at steps, suggesting that both Obr vacs and steps contribute a similar effective charge to sample doping. The binding energy of the gap state shifts when going from the flat (110) surface toward densely stepped planes, pointing to differences in the Ti(3+) polaron near steps and at terraces.
Science | 2018
Martin Setvin; Michele Reticcioli; Flora Poelzleitner; Jan Hulva; Michael Schmid; L. A. Boatner; Cesare Franchini; Ulrike Diebold
Compensating a polar surface An ionic crystal surface can be electrostatically unstable, and the surface must reconstruct in some way to avoid this “polar catastrophe.” Setvin et al. used scanning probe microscopies and density functional theory to study the changes in the polar surface of the perovskite KTaO3. They observed several structural reconstructions as the surface cleaved in vacuum was heated to higher temperatures. These ranged from surface distortions to the formation of oxygen vacancies to the development of KO and TaO2 stripes. Hydroxylation after exposure to water vapor also stabilized the surface. Science, this issue p. 572 An ionic material can alleviate the energetic instability of its polar surface in several different ways. The stacking of alternating charged planes in ionic crystals creates a diverging electrostatic energy—a “polar catastrophe”—that must be compensated at the surface. We used scanning probe microscopies and density functional theory to study compensation mechanisms at the perovskite potassium tantalate (KTaO3) (001) surface as increasing degrees of freedom were enabled. The as-cleaved surface in vacuum is frozen in place but immediately responds with an insulator-to-metal transition and possibly ferroelectric lattice distortions. Annealing in vacuum allows the formation of isolated oxygen vacancies, followed by a complete rearrangement of the top layers into an ordered pattern of KO and TaO2 stripes. The optimal solution is found after exposure to water vapor through the formation of a hydroxylated overlayer with ideal geometry and charge.