Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Srnec is active.

Publication


Featured researches published by Martin Srnec.


Nature | 2013

Elucidation of the Fe(iv)=O intermediate in the catalytic cycle of the halogenase SyrB2

Shaun D. Wong; Martin Srnec; Megan L. Matthews; Lei V. Liu; Yeonju Kwak; Kiyoung Park; Caleb B. Bell; E. Ercan Alp; Jiyong Zhao; Yoshitaka Yoda; Shinji Kitao; Makoto Seto; Carsten Krebs; J. Martin Bollinger; Edward I. Solomon

SUMMARY Mononuclear non-haem iron (NHFe) enzymes catalyse a wide variety of oxidative reactions including halogenation, hydroxylation, ring closure, desaturation, and aromatic ring cleavage. These are highly important for mammalian somatic processes such as phenylalanine metabolism, production of neurotransmitters, hypoxic response, and the biosynthesis of natural products.1–3 The key reactive intermediate in the catalytic cycles of these enzymes is an S = 2 FeIV=O species, which has been trapped for a number of NHFe enzymes4–8 including the halogenase SyrB2, the subject of this study. Computational studies to understand the reactivity of the enzymatic NHFe FeIV=O intermediate9–13 are limited in applicability due to the paucity of experimental knowledge regarding its geometric and electronic structures, which determine its reactivity. Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) is a sensitive and effective method that defines the dependence of the vibrational modes of Fe on the nature of the FeIV=O active site.14–16 Here we present the first NRVS structural characterisation of the reactive FeIV=O intermediate of a NHFe enzyme. This FeIV=O intermediate reacts via an initial H-atom abstraction step, with its subsquent halogenation (native) or hydroxylation (non-native) rebound reactivity being dependent on the substrate.17 A correlation of the experimental NRVS data to electronic structure calculations indicates that the substrate is able to direct the orientation of the FeIV=O intermediate, presenting specific frontier molecular orbitals (FMOs) which can activate the selective halogenation versus hydroxylation reactivity.Mononuclear non-haem iron (NHFe) enzymes catalyse a broad range of oxidative reactions, including halogenation, hydroxylation, ring closure, desaturation and aromatic ring cleavage reactions. They are involved in a number of biological processes, including phenylalanine metabolism, the production of neurotransmitters, the hypoxic response and the biosynthesis of secondary metabolites. The reactive intermediate in the catalytic cycles of these enzymes is a high-spin S = 2 Fe(iv)=O species, which has been trapped for a number of NHFe enzymes, including the halogenase SyrB2 (syringomycin biosynthesis enzyme 2). Computational studies aimed at understanding the reactivity of this Fe(iv)=O intermediate are limited in applicability owing to the paucity of experimental knowledge about its geometric and electronic structure. Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) is a sensitive and effective method that defines the dependence of the vibrational modes involving Fe on the nature of the Fe(iv)=O active site. Here we present NRVS structural characterization of the reactive Fe(iv)=O intermediate of a NHFe enzyme, namely the halogenase SyrB2 from the bacterium Pseudomonas syringae pv. syringae. This intermediate reacts via an initial hydrogen-atom abstraction step, performing subsequent halogenation of the native substrate or hydroxylation of non-native substrates. A correlation of the experimental NRVS data to electronic structure calculations indicates that the substrate directs the orientation of the Fe(iv)=O intermediate, presenting specific frontier molecular orbitals that can activate either selective halogenation or hydroxylation.


Accounts of Chemical Research | 2013

Geometric and Electronic Structure Contributions to Function in Non-heme Iron Enzymes

Edward I. Solomon; Kenneth M. Light; Lei V. Liu; Martin Srnec; Shaun D. Wong

Mononuclear non-heme Fe (NHFe) enzymes play key roles in DNA repair, the biosynthesis of antibiotics, the response to hypoxia, cancer therapy, and many other biological processes. These enzymes catalyze a diverse range of oxidation reactions, including hydroxylation, halogenation, ring closure, desaturation, and electrophilic aromatic substitution (EAS). Most of these enzymes use an Fe(II) site to activate dioxygen, but traditional spectroscopic methods have not allowed researchers to insightfully probe these ferrous active sites. We have developed a methodology that provides detailed geometric and electronic structure insights into these NHFe(II) active sites. Using these data, we have defined a general mechanistic strategy that many of these enzymes use: they control O2 activation (and limit autoxidation and self-hydroxylation) by allowing Fe(II) coordination unsaturation only in the presence of cosubstrates. Depending on the type of enzyme, O2 activation either involves a 2e(-) reduced Fe(III)-OOH intermediate or a 4e(-) reduced Fe(IV)═O intermediate. Nuclear resonance vibrational spectroscopy (NRVS) has provided the geometric structure of these intermediates, and magnetic circular dichroism (MCD) has defined the frontier molecular orbitals (FMOs), the electronic structure that controls reactivity. This Account emphasizes that experimental spectroscopy is critical in evaluating the results of electronic structure calculations. Therefore these data are a key mechanistic bridge between structure and reactivity. For the Fe(III)-OOH intermediates, the anticancer drug activated bleomycin (BLM) acts as the non-heme Fe analog of compound 0 in heme (e.g., P450) chemistry. However BLM shows different reactivity: the low-spin (LS) Fe(III)-OOH can directly abstract a H atom from DNA. The LS and high-spin (HS) Fe(III)-OOHs have fundamentally different transition states. The LS transition state goes through a hydroxyl radical, but the HS transition state is activated for EAS without O-O cleavage. This activation is important in one class of NHFe enzymes that utilizes a HS Fe(III)-OOH intermediate in dioxygenation. For Fe(IV)═O intermediates, the LS form has a π-type FMO activated for attack perpendicular to the Fe-O bond. However, the HS form (present in the NHFe enzymes) has a π FMO activated perpendicular to the Fe-O bond and a σ FMO positioned along the Fe-O bond. For the NHFe enzymes, the presence of π and σ FMOs enables enzymatic control in determining the type of reactivity: EAS or H-atom extraction for one substrate with different enzymes and halogenation or hydroxylation for one enzyme with different substrates.


Proceedings of the National Academy of Sciences of the United States of America | 2012

π-Frontier molecular orbitals in S = 2 ferryl species and elucidation of their contributions to reactivity

Martin Srnec; Shaun D. Wong; Jason England; Lawrence Que; Edward I. Solomon

S = 2 FeIV═O species are key intermediates in the catalysis of most nonheme iron enzymes. This article presents detailed spectroscopic and high-level computational studies on a structurally-defined S = 2 FeIV═O species that define its frontier molecular orbitals, which allow its high reactivity. Importantly, there are both π- and σ-channels for reaction, and both are highly reactive because they develop dominant oxyl character at the transition state. These π- and σ-channels have different orientation dependences defining how the same substrate can undergo different reactions (H-atom abstraction vs. electrophilic aromatic attack) with FeIV═O sites in different enzymes, and how different substrates can undergo different reactions (hydroxylation vs. halogenation) with an FeIV═O species in the same enzyme.


Journal of the American Chemical Society | 2008

Effect of spin-orbit coupling on reduction potentials of octahedral ruthenium(II/III) and osmium(II/III) complexes.

Martin Srnec; Jakub Chalupský; Miroslav Fojta; Lucie Zendlová; Luděk Havran; Michal Hocek; Mojmír Kývala; Lubomír Rulíšek

Reduction potentials of several M(2+/3+) (M = Ru, Os) octahedral complexes, namely, [M(H2O)6](2+/3+), [MCl6](4-/3-), [M(NH3)6](2+/3+), [M(en)3](2+/3+) [M(bipy)3](2+/3+), and [M(CN)6](4-/3-), were calculated using the CASSCF/CASPT2/CASSI and MRCI methods including spin-orbit coupling (SOC) by means of first-order quasi-degenerate perturbation theory. It was shown that the effect of SOC accounts for a systematic shift of approximately -70 mV in the reduction potentials of the studied ruthenium (II/III) complexes and an approximately -300 mV shift for the osmium(II/III) complexes. SOC splits the sixfold-degenerate (2)T(2g) ground electronic state (in ideal octahedral symmetry) of the M(3+) ions into the E((5/2)g) Kramers doublet and G((3/2)g) quartet, which were calculated to split by 1354-1573 cm(-1) in the Ru(3+) complexes and 4155-5061 cm(-1) in the Os(3+) complexes. It was demonstrated that this splitting represents the main contribution to the stabilization of the M(3+) ground state with respect to the closed-shell (1)A(1g) ground state in M(2+) systems. Moreover, it was shown that the accuracy of the calculated reduction potentials depends on the calculated solvation energies of both the oxidized and reduced forms. For smaller ligands, it involves explicit inclusion of the second solvation sphere into the calculations, whereas implicit solvation models yield results of sufficient accuracy for complexes with larger ligands. In such cases (e.g., [M(bipy)3](2+/3+) and its derivatives), very good agreement between the calculated (SOC-corrected) values of the reduction potentials and the available experimental values was obtained. These results led us to the conclusion that especially for Os(2+/3+) complexes, inclusion of SOC is necessary to avoid systematic errors of approximately 300 mV in the calculated reduction potentials.


ChemPhysChem | 2011

Reduction potentials and acidity constants of Mn superoxide dismutase calculated by QM/MM free-energy methods.

Jimmy Heimdal; M. Kaukonen; Martin Srnec; Lubomír Rulíšek; Ulf Ryde

We used two theoretical methods to estimate reduction potentials and acidity constants in Mn superoxide dismutase (MnSOD), namely combined quantum mechanical and molecular mechanics (QM/MM) thermodynamic cycle perturbation (QTCP) and the QM/MM-PBSA approach. In the latter, QM/MM energies are combined with continuum solvation energies calculated by solving the Poisson-Boltzmann equation (PB) or by the generalised Born approach (GB) and non-polar solvation energies calculated from the solvent-exposed surface area. We show that using the QTCP method, we can obtain accurate and precise estimates of the proton-coupled reduction potential for MnSOD, 0.30±0.01 V, which compares favourably with experimental estimates of 0.26-0.40 V. However, the calculated potentials depend strongly on the DFT functional used: The B3LYP functional gives 0.6 V more positive potentials than the PBE functional. The QM/MM-PBSA approach leads to somewhat too high reduction potentials for the coupled reaction and the results depend on the solvation model used. For reactions involving a change in the net charge of the metal site, the corresponding results differ by up to 1.3 V or 24 pK(a) units, rendering the QM/MM-PBSA method useless to determine absolute potentials. However, it may still be useful to estimate relative shifts, although the QTCP method is expected to be more accurate.


Journal of Physical Chemistry B | 2009

Reaction Mechanism of Manganese Superoxide Dismutase Studied by Combined Quantum and Molecular Mechanical Calculations and Multiconfigurational Methods

Martin Srnec; Francesco Aquilante; Ulf Ryde; Lubomír Rulíšek

Manganese superoxide dismutases (MnSODs) are enzymes that convert two molecules of the poisonous superoxide radical into molecular oxygen and hydrogen peroxide. During the reaction, the manganese ion cycles between the Mn(2+) and Mn(3+) oxidation states and accomplishes its enzymatic action in two half-cycles (corresponding to the oxidation and reduction of O(2)(-)). Despite many experimental and theoretical studies dealing with SODs, including quantum chemical active-site-model studies of numerous variants of the reaction mechanisms, several details of MnSOD enzymatic action are still unclear. In this study, we have modeled and compared four reaction pathways (one associative, one dissociative, and two second-sphere) in a protein environment using the QM/MM approach (combined quantum and molecular mechanics calculations) at the density functional theory level. The results were complemented by CASSCF/CASPT2/MM single-point energy calculations for the most plausible models to account properly for the multireference character of the various spin multiplets. The results indicate that the oxidation of O(2)(-) to O(2) most likely occurs by an associative mechanism following a two-state (quartet-octet) reaction profile. The barrier height is estimated to be less than 25 kJ.mol(-1). On the other hand, the conversion of O(2)(-) to H(2)O(2) is likely to take place by a second-sphere mechanism, that is, without direct coordination of the superoxide radical to the manganese center. The reaction pathway involves the conical intersection of two quintet states, giving rise to an activation barrier of approximately 60 kJ.mol(-1). The calculations also indicate that the associative mechanism can represent a competitive pathway in the second half-reaction with the overall activation barrier being only slightly higher than the activation barrier in the second-sphere mechanism. The activation barriers along the proposed reaction pathways are in very good agreement with the experimentally observed reaction rates of SODs (k(cat) approximately 10(4)-10(5) s(-1)).


Journal of the American Chemical Society | 2014

Reactivity of the Binuclear Non-Heme Iron Active Site of Δ9 Desaturase Studied by Large-Scale Multireference Ab Initio Calculations

Jakub Chalupský; Tibor András Rokob; Yuki Kurashige; Takeshi Yanai; Edward I. Solomon; Lubomír Rulíšek; Martin Srnec

The results of density matrix renormalization group complete active space self-consistent field (DMRG-CASSCF) and second-order perturbation theory (DMRG-CASPT2) calculations are presented on various structural alternatives for the O-O and first C-H activating step of the catalytic cycle of the binuclear nonheme iron enzyme Δ(9) desaturase. This enzyme is capable of inserting a double bond into an alkyl chain by double hydrogen (H) atom abstraction using molecular O2. The reaction step studied here is presumably associated with the highest activation barrier along the full pathway; therefore, its quantitative assessment is of key importance to the understanding of the catalysis. The DMRG approach allows unprecedentedly large active spaces for the explicit correlation of electrons in the large part of the chemically important valence space, which is apparently conditio sine qua non for obtaining well-converged reaction energetics. The derived reaction mechanism involves protonation of the previously characterized 1,2-μ peroxy Fe(III)Fe(III) (P) intermediate to a 1,1-μ hydroperoxy species, which abstracts an H atom from the C10 site of the substrate. An Fe(IV)-oxo unit is generated concomitantly, supposedly capable of the second H atom abstraction from C9. In addition, several popular DFT functionals were compared to the computed DMRG-CASPT2 data. Notably, many of these show a preference for heterolytic C-H cleavage, erroneously predicting substrate hydroxylation. This study shows that, despite its limitations, DMRG-CASPT2 is a significant methodological advancement toward the accurate computational treatment of complex bioinorganic systems, such as those with the highly open-shell diiron active sites.


Inorganic Chemistry | 2012

Structural and spectroscopic properties of the peroxodiferric intermediate of Ricinus communis soluble Δ9 desaturase.

Martin Srnec; Tibor András Rokob; Jennifer K. Schwartz; Yeonju Kwak; Lubomír Rulíšek; Edward I. Solomon

Large-scale quantum and molecular mechanical methods (QM/MM) and QM calculations were carried out on the soluble Δ(9) desaturase (Δ(9)D) to investigate various structural models of the spectroscopically defined peroxodiferric (P) intermediate. This allowed us to formulate a consistent mechanistic picture for the initial stages of the reaction mechanism of Δ(9)D, an important diferrous nonheme iron enzyme that cleaves the C-H bonds in alkane chains resulting in the highly specific insertion of double bonds. The methods (density functional theory (DFT), time-dependent DFT (TD-DFT), QM(DFT)/MM, and TD-DFT with electrostatic embedding) were benchmarked by demonstrating that the known spectroscopic effects and structural perturbation caused by substrate binding to diferrous Δ(9)D can be qualitatively reproduced. We show that structural models whose spectroscopic (absorption, circular dichroism (CD), vibrational and Mössbauer) characteristics correlate best with experimental data for the P intermediate correspond to the μ-1,2-O(2)(2-) binding mode. Coordination of Glu196 to one of the iron centers (Fe(B)) is demonstrated to be flexible, with the monodentate binding providing better agreement with spectroscopic data, and the bidentate structure being slightly favored energetically (1-10 kJ mol(-1)). Further possible structures, containing an additional proton or water molecule are also evaluated in connection with the possible activation of the P intermediate. Specifically, we suggest that protonation of the peroxide moiety, possibly preceded by water binding in the Fe(A) coordination sphere, could be responsible for the conversion of the P intermediate in Δ(9)D into a form capable of hydrogen abstraction. Finally, results are compared with recent findings on the related ribonucleotide reductase and toluene/methane monooxygenase enzymes.


Dalton Transactions | 2012

Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives

Tibor András Rokob; Martin Srnec; Lubomír Rulíšek

In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.


Faraday Discussions | 2011

Reductive cleavage of the O–O bond in multicopper oxidases: a QM/MM and QM study

Martin Srnec; Ulf Ryde; Lubomír Rulíšek

The key step in the reaction mechanism of multicopper oxidases (MCOs)--the cleavage of the O-O bond in O2--has been investigated using combined quantum mechanical and molecular mechanical (QM/MM) methods. This process represents a reaction pathway from the peroxy intermediate after it accepts one electron from the nearby type-1 Cu site to the experimentally-observed native intermediate, which is the only fully oxidised catalytically relevant state in MCOs. Scans of the QM(DFT)/MM potential energy surface have allowed us to obtain estimates of the activation energies. Furthermore, vacuum calculations on a smaller model of the active site have allowed us to estimate the entropy contributions to the barrier height and to obtain further insight into the reaction by comparing the small cluster model with the QM/MM model, which includes the entire protein. Owing to the complicated electronic structure of these low-spin exchange coupled systems, multireference quantum chemical calculations at the complete-active space second-order perturbation theory (CASPT2) were used in an attempt to benchmark the barrier heights obtained at the DFT(B3LYP) level. Our best estimate of the activation barrier is deltaG = 60-65 kJ mol(-1), in good agreement with the experimental barrier of approximately 55 kJ mol(-1), which can be inferred from the experimental rate constant of k > 350 s(-1). It has also been shown that the reaction involves protonation of the O2 moiety before bond cleavage. The proton likely comes from a nearby carboxylate residue which was recently suggested by the experiments.

Collaboration


Dive into the Martin Srnec's collaboration.

Top Co-Authors

Avatar

Lubomír Rulíšek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rudolf Zahradník

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Bím

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jakub Chalupský

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Andris

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jana Roithová

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge