Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Stacey is active.

Publication


Featured researches published by Martin Stacey.


Journal of Experimental Medicine | 2005

The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance

Hsi-Hsien Lin; Douglas E. Faunce; Martin Stacey; Ania Terajewicz; Takahiko Nakamura; Jie Zhang-Hoover; Marilyn Kerley; Michael L. Mucenski; Siamon Gordon; Joan Stein-Streilein

We show that the mouse macrophage-restricted F4/80 protein is not required for the development and distribution of tissue macrophages but is involved in the generation of antigen-specific efferent regulatory T (T reg) cells that suppress antigen-specific immunity. In the in vivo anterior chamber (a.c.)–associated immune deviation (ACAID) model of peripheral tolerance, a.c. inoculation of antigen into F4/80−/− mice was unable to induce efferent T reg cells and suppress delayed-type hypersensitivity (DTH) responses. Moreover, the use of anti-F4/80 mAb and F4/80−/− APCs in an in vitro ACAID model showed that all APC cells in the culture must be able to express F4/80 protein if efferent T reg cells were to be generated. In a low-dose oral tolerance model, WT but not F4/80−/− mice generated an efferent CD8+ T reg cell population that suppressed an antigen-specific DTH response. Peripheral tolerance was restored in F4/80−/− mice by adoptive transfer of F4/80+ APCs in both peripheral tolerance models, indicating a central role for the F4/80 molecule in the generation of efferent CD8+ T reg cells.


Circulation Research | 2011

Orai1 and CRAC Channel Dependence of VEGF-Activated Ca2+ Entry and Endothelial Tube Formation

Jing Li; Richard M. Cubbon; Lesley A. Wilson; Mohamed S Amer; Lynn McKeown; Bing Hou; Yasser Majeed; Sarka Tumova; Victoria A.L. Seymour; Hilary Taylor; Martin Stacey; David J. O'Regan; Richard Foster; Karen E. Porter; Mark T. Kearney; David J. Beech

Rationale: Orai1 and the associated calcium release-activated calcium (CRAC) channel were discovered in the immune system. Existence also in endothelial cells has been suggested, but the relevance to endothelial biology is mostly unknown. Objective: The aim of this study was to investigate the relevance of Orai1 and CRAC channels to vascular endothelial growth factor (VEGF) and endothelial tube formation. Methods and Results: In human umbilical vein endothelial cells, Orai1 disruption by short-interfering RNA or dominant-negative mutant Orai1 inhibited calcium release–activated (store-operated) calcium entry, VEGF-evoked calcium entry, cell migration, and in vitro tube formation. Expression of exogenous wild-type Orai1 rescued the tube formation. VEGF receptor-2 and Orai1 partially colocalized. Orai1 disruption also inhibited calcium entry and tube formation in endothelial progenitor cells from human blood. A known blocker of the immune cell CRAC channel (3-fluoropyridine-4-carboxylic acid (2′,5′-dimethoxybiphenyl-4-yl)amide) was a strong blocker of store-operated calcium entry in endothelial cells and inhibited calcium entry evoked by VEGF in 3 types of human endothelial cell. The compound lacked effect on VEGF-evoked calcium-release, STIM1 clustering, and 2 types of transient receptor potential channels, TRPC6 and TRPV4. Without effect on cell viability, the compound inhibited human endothelial cell migration and tube formation in vitro and suppressed angiogenesis in vivo in the chick chorioallantoic membrane. The compound showed 100-fold greater potency for endothelial compared with immune cell calcium entry. Conclusions: The data suggest positive roles for Orai1 and CRAC channels in VEGF-evoked calcium entry and new opportunity for chemical modulation of angiogenesis.


Pharmacological Reviews | 2015

International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors

Jörg Hamann; Gabriela Aust; Demet Araç; Felix B. Engel; Caroline J. Formstone; Robert Fredriksson; Randy A. Hall; Breanne L. Harty; Christiane Kirchhoff; Barbara Knapp; Arunkumar Krishnan; Ines Liebscher; Hsi-Hsien Lin; David C. Martinelli; Kelly R. Monk; Miriam C. Peeters; Xianhua Piao; Simone Prömel; Torsten Schöneberg; Thue W. Schwartz; Kathleen Singer; Martin Stacey; Yuri A. Ushkaryov; Mario Vallon; Uwe Wolfrum; Mathew W. Wright; Lei Xu; Tobias Langenhan; Helgi B. Schiöth

The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein–coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.


Journal of Biological Chemistry | 2001

Molecular Analysis of the Epidermal Growth Factor-like Short Consensus Repeat Domain-mediated Protein-Protein Interactions DISSECTION OF THE CD97-CD55 COMPLEX

Hsi-Hsien Lin; Martin Stacey; Claire Saxby; Vroni Knott; Yasmin Chaudhry; David J.A. Evans; Siamon Gordon; Andrew J. McKnight; Penny A. Handford; Susan M. Lea

Epidermal growth factor-like (EGF) and short consensus repeat (SCR) domains are commonly found in cell surface and soluble proteins that mediate specific protein-protein recognition events. Unlike the immunoglobulin (Ig) superfamily, very little is known about the general properties of intermolecular interactions encoded by these common modules, and in particular, how specificity of binding is achieved. We have dissected the binding of CD97 (a member of the EGF-TM7 family) to the complement regulator CD55, two cell surface modular proteins that contain EGF and SCR domains, respectively. We demonstrate that the interaction is mediated solely by these domains and is characterized by a low affinity (86 μm) and rapid off-rate (at least 0.6 s−1). The interaction is Ca2+ -dependent but is unaffected by glycosylation of the EGF domains. Using biotinylated multimerized peptides in cell binding assays and surface plasmon resonance, we show that a CD97-related EGF-TM7 molecule (termed EMR2), differing by only three amino acids within the EGF domains, binds CD55 with aK D at least an order of magnitude weaker than that of CD97. These results suggest that low affinity cell-cell interactions may be a general feature of highly expressed cell surface proteins and that specificity of SCR-EGF binding can be finely tuned by a small number of amino acid changes on the EGF module surface.


Journal of Leukocyte Biology | 2010

The myeloid 7/4‐antigen defines recently generated inflammatory macrophages and is synonymous with Ly‐6B

Marcela Rosas; Benjamin Thomas; Martin Stacey; Siamon Gordon; Philip R. Taylor

This study aimed to identify the inflammation‐associated 7/4‐antigen, which is highly expressed on neutrophils, inflammatory monocytes, some activated macrophages, as well as on bone marrow myeloid‐restricted progenitors. The high expression on inflammatory cells is suggestive of a role in inflammation and makes the 7/4‐antigen a potential target for the manipulation of inflammatory cells. Consistent with this, the 7/4‐antibody mediates specific depletion of 7/4‐expressing neutrophils and monocytes. We have identified the 7/4‐antigen as a 25‐ to 30‐kDa GPI‐anchored glycoprotein synonymous with the Ly‐6B.2 alloantigen. We characterized the expression of Ly‐6B during the inflammatory reaction induced by zymosan. During the later stages of an experimental, acute, self‐resolving inflammatory response, we found that Ly‐6B is differentially expressed on macrophages. Ly‐6B‐expressing macrophages also express more MHCII, CIITA, CCR2, Ly‐6C, and CD62L than the Ly‐6B‐negative macrophages, which in turn, express more of the resident tissue macrophage marker SIGN‐R1 and higher CD11b and F4/80. Ly‐6B‐expressing macrophages incorporate more BrdU than their Ly‐6B‐negative contemporaries when fed during the resolution phase of the acute inflammatory response. Thus, Ly‐6B expression on mature macrophages defines a subset of recently generated inflammatory macrophages that retain monocytic markers and is hence a surrogate marker of macrophage turnover in inflammatory lesions. The definition of the 7/4:Ly‐6B antigen will allow further characterization and specific modulation of Ly‐6B‐expressing cells in vivo.


Journal of Biological Chemistry | 2002

EMR4, a Novel Epidermal Growth Factor (EGF)-TM7 Molecule Up-regulated in Activated Mouse Macrophages, Binds to a Putative Cellular Ligand on B Lymphoma Cell Line A20

Martin Stacey; Gin Wen Chang; Stephanie Sanos; Laura R. Chittenden; Lisa Stubbs; Siamon Gordon; Hsi-Hsien Lin

A novel member of the EGF-TM7 family, mEMR4, was identified and characterized. The full-length mouse EMR4 cDNA encodes a predicted 689-amino acid protein containing two epidermal growth factor (EGF)-like modules, a mucin-like spacer domain, and a seven-transmembrane domain with a cytoplasmic tail. Genetic mapping established thatmEMR4 is localized in the distal region of mouse chromosome 17 in close proximity to another EGF-TM7 gene,F4/80 (Emr1). Similar toF4/80, mEMR4 is predominantly expressed on resident macrophages. However, a much lower expression level was also detected in thioglycollate-elicited peritoneal neutrophils and bone marrow-derived dendritic cells. The expression ofmEMR4 is up-regulated following macrophage activation in Biogel and thioglycollate-elicited peritoneal macrophages. Similarly, mEMR4 is over-expressed in TNF-α-treated resident peritoneal macrophages, whereas interleukin-4 and -10 dramatically reduce the expression. mEMR4 was found to undergo proteolytic processing within the extracellular stalk region resulting in two protein subunits associated noncovalently as a heterodimer. The proteolytic cleavage site was identified by N-terminal amino acid sequencing and located at the conserved GPCR (G protein-coupled receptor) proteolytic site in the extracellular region. Using multivalent biotinylated mEMR4-mFc fusion proteins as a probe, a putative cell surface ligand was identified on a B lymphoma cell line, A20, in a cell-binding assay. The mEMR4-ligand interaction is Ca2+-independent and is mediated predominantly by the second EGF-like module. mEMR4 is the first EGF-TM7 receptor known to mediate the cellular interaction between myeloid cells and B cells.


European Journal of Immunology | 2011

F4/80 and the related adhesion-GPCRs.

Siamon Gordon; Jörg Hamann; Hsi-Hsien Lin; Martin Stacey

The F4/80 monoclonal antibody was first reported in this journal 30 years ago (Eur. J. Immunol. 1981. 11: 805–815). F4/80 has become a widely used marker for monocytes and many, but not all, tissue macrophages in the mouse. F4/80 is a member of the EGF‐TM7 family of leukocyte plasma membrane heptahelical molecules, which includes CD97 and EMR2. This Viewpoint summarises current knowledge of the expression, structure and functions of the EGF‐TM7 family, as part of a larger family of tissue adhesion‐GPCRs.


Journal of Biological Chemistry | 2008

Localization of the Delta-like-1-binding Site in Human Notch-1 and Its Modulation by Calcium Affinity

Jemima J. Cordle; Christina RedfieldZ; Martin Stacey; P. Anton van der Merwe; Antony C. Willis; Brian R. Champion; Sophie Hambleton; Penny A. Handford

The Notch signaling pathway plays a key role in a myriad of cellular processes, including cell fate determination. Despite extensive study of the downstream consequences of receptor activation, very little molecular data are available for the initial binding event between the Notch receptor and its ligands. In this study, we have expressed and purified a natively folded wild-type epidermal growth factor-like domain (EGF) 11-14 construct from human Notch-1 and have used flow cytometry and surface plasmon resonance analysis to demonstrate a calcium-dependent interaction with the human ligand Delta-like-1. Site-directed mutagenesis of three of the calcium-binding sites within the Notch-(11-14) fragment indicated that only loss of calcium binding to EGF12, and not EGF11 or EGF13, abrogates ligand binding. Further mapping of the ligand-binding site within this region by limited proteolysis of Notch wild-type and mutant fragments suggested that EGF12 rather than EGF11 contains the major Delta-like-1-binding site. Analysis of an extended fragment EGF-(10-14), where EGF11 is placed in a native context, surprisingly demonstrated a reduction in ligand binding, suggesting that EGF10 modulates binding by limiting access of ligand. This inhibition could be overcome by the introduction of a calcium binding mutation in EGF11, which decouples the EGF-(10-11) module interface. This study therefore demonstrates that long range calcium-dependent structural perturbations can influence the affinity of Notch for its ligand, in the absence of any post-translational modifications.


Molecular and Cellular Biology | 2012

Activation of Myeloid Cell-Specific Adhesion Class G Protein-Coupled Receptor EMR2 via Ligation-Induced Translocation and Interaction of Receptor Subunits in Lipid Raft Microdomains

Yi-Shu Huang; Nien-Yi Chiang; Ching-Hsun Hu; Cheng-Chih Hsiao; Kai-Fong Cheng; Wen-Pin Tsai; Simon Yona; Martin Stacey; Siamon Gordon; Gin-Wen Chang; Hsi-Hsien Lin

ABSTRACT The adhesion class G protein-coupled receptors (adhesion-GPCRs) play important roles in diverse biological processes ranging from immunoregulation to tissue polarity, angiogenesis, and brain development. These receptors are uniquely modified by self-catalytic cleavage at a highly conserved GPCR proteolysis site (GPS) dissecting the receptor into an extracellular subunit (α) and a seven-pass transmembrane subunit (β) with cellular adhesion and signaling functions, respectively. Using the myeloid cell-restricted EMR2 receptor as a paradigm, we exam the mechanistic relevance of the subunit interaction and demonstrate a critical role for GPS autoproteolysis in mediating receptor signaling and cell activation. Interestingly, two distinct receptor complexes are identified as a result of GPS proteolysis: one consisting of a noncovalent α-β heterodimer and the other comprising two completely independent receptor subunits which distribute differentially in membrane raft microdomains. Finally, we show that receptor ligation induces subunit translocation and colocalization within lipid rafts, leading to receptor signaling and inflammatory cytokine production by macrophages. Our present data resolve earlier conflicting results and provide a new mechanism of receptor signaling, as well as providing a paradigm for signal transduction within the adhesion-GPCR family.


Oncology Reports | 2011

Leukocyte adhesion-GPCR EMR2 is aberrantly expressed in human breast carcinomas and is associated with patient survival

John Q. Davies; Hsi-Hsien Lin; Martin Stacey; Simon Yona; Gin-Wen Chang; Siamon Gordon; Jörg Hamann; Leticia Campo; Cheng Han; Peter Chan; Stephen B. Fox

EGF-like module containing mucin-like hormone receptor 2 (EMR2) is a leukocyte-restricted adhesion G protein-coupled receptor. Aberrant expression of EMR2 and its highly homologous molecule CD97 have been reported in various human cancers. Herein, we investigate the expression of EMR2 in neoplastic breast human tissue and its relationship with patient survival. EMR2 expression in normal and neoplastic breast tissue was assessed by immunohistochemistry in sections from 10 normal controls and micro-arrayed tissue cores from 69 cases of ductal carcinoma in situ (DCIS) and 272 invasive carcinomas. The pattern and intensity of staining was correlated with the clinicopathological characteristics of each case and the disease outcome. While absent in normal breast epithelium, EMR2 was significantly up-regulated in the cytoplasmic and nuclear compartments of both DCIS and invasive carcinoma, with invasive samples displaying significantly higher expression levels compared with in situ disease. In invasive disease, EMR2 cytoplasmic expression was significantly associated with higher tumour grade but not with patient age, nodal status, tumour size, estrogen receptor expression, relapse-free or overall survival. In contrast, EMR2 nuclear expression correlated negatively with higher tumour grade. Of note, EMR2 nuclear expression was associated with longer relapse-free survival as well as overall survival. This study indicates that EMR2 is expressed in neoplastic breast epithelium and suggests that expression patterns of EMR2 are relevant in breast cancer progression. The association of improved patient survival with higher nuclear expression levels identifies EMR2 as a potential biomarker in patients with invasive breast cancer.

Collaboration


Dive into the Martin Stacey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Hamann

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Laws

Leeds Teaching Hospitals NHS Trust

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge