Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Stahl is active.

Publication


Featured researches published by Martin Stahl.


PLOS Pathogens | 2013

SIGIRR, a Negative Regulator of TLR/IL-1R Signalling Promotes Microbiota Dependent Resistance to Colonization by Enteric Bacterial Pathogens

Ho Pan Sham; Emily Yu; Muhammet Fatih Gulen; Ganive Bhinder; Martin Stahl; Justin M. Chan; Lara Brewster; Vijay Morampudi; Deanna L. Gibson; Michael R. Hughes; Kelly M. McNagny; Xiaoxia Li; Bruce A. Vallance

Enteric bacterial pathogens such as enterohemorrhagic E. coli (EHEC) and Salmonella Typhimurium target the intestinal epithelial cells (IEC) lining the mammalian gastrointestinal tract. Despite expressing innate Toll-like receptors (TLRs), IEC are innately hypo-responsive to most bacterial products. This is thought to prevent maladaptive inflammatory responses against commensal bacteria, but it also limits antimicrobial responses by IEC to invading bacterial pathogens, potentially increasing host susceptibility to infection. One reason for the innate hypo-responsiveness of IEC is their expression of Single Ig IL-1 Related Receptor (SIGIRR), a negative regulator of interleukin (IL)-1 and TLR signaling. To address whether SIGIRR expression and the innate hypo-responsiveness of IEC impacts on enteric host defense, Sigirr deficient (−/−) mice were infected with the EHEC related pathogen Citrobacter rodentium. Sigirr −/− mice responded with accelerated IEC proliferation and strong pro-inflammatory and antimicrobial responses but surprisingly, Sigirr −/− mice proved dramatically more susceptible to infection than wildtype mice. Through haematopoietic transplantation studies, it was determined that SIGIRR expression by non-haematopoietic cells (putative IEC) regulated these responses. Moreover, the exaggerated responses were found to be primarily dependent on IL-1R signaling. Whilst exploring the basis for their susceptibility, Sigirr −/− mice were found to be unusually susceptible to intestinal Salmonella Typhimurium colonization, developing enterocolitis without the typical requirement for antibiotic based removal of competing commensal microbes. Strikingly, the exaggerated antimicrobial responses seen in Sigirr −/− mice were found to cause a rapid and dramatic loss of commensal microbes from the infected intestine. This depletion appears to reduce the ability of the microbiota to compete for space and nutrients (colonization resistance) with the invading pathogens, leaving the intestine highly susceptible to pathogen colonization. Thus, SIGIRR expression by IEC reflects a strategy that sacrifices maximal innate responsiveness by IEC in order to promote commensal microbe based colonization resistance against bacterial pathogens.


PLOS Pathogens | 2014

A Novel Mouse Model of Campylobacter jejuni Gastroenteritis Reveals Key Pro-inflammatory and Tissue Protective Roles for Toll-like Receptor Signaling during Infection

Martin Stahl; Jenna Ries; Jenny Vermeulen; Hong Yang; Ho Pan Sham; Shauna M. Crowley; Yuliya Badayeva; Stuart E. Turvey; Erin C. Gaynor; Xiaoxia Li; Bruce A. Vallance

Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its hosts intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr−/−), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr−/− mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr−/− mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4−/−/Sigirr−/− mice were largely unresponsive to infection by C. jejuni, whereas Tlr2−/−/Sigirr−/− mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr−/− mice as an exciting and relevant animal model for studying the pathogenesis and innate immune responses to C. jejuni.


Infection and Immunity | 2014

Intestinal Epithelium-Specific MyD88 Signaling Impacts Host Susceptibility to Infectious Colitis by Promoting Protective Goblet Cell and Antimicrobial Responses

Ganive Bhinder; Martin Stahl; Ho Pan Sham; Shauna M. Crowley; Vijay Morampudi; Udit Dalwadi; Caixia Ma; Kevan Jacobson; Bruce A. Vallance

ABSTRACT Intestinal epithelial cells (IECs), including secretory goblet cells, form essential physiochemical barriers that separate luminal bacteria from underlying immune cells in the intestinal mucosa. IECs are common targets for enteric bacterial pathogens, with hosts responding to these microbes through innate toll-like receptors that predominantly signal through the MyD88 adaptor protein. In fact, MyD88 signaling confers protection against several enteric bacterial pathogens, including Salmonella enterica serovar Typhimurium and Citrobacter rodentium. Since IECs are considered innately hyporesponsive, it is unclear whether MyD88 signaling within IECs contributes to this protection. We infected mice lacking MyD88 solely in their IECs (IEC-Myd88 −/−) with S. Typhimurium. Compared to wild-type (WT) mice, infected IEC-Myd88 −/− mice suffered accelerated tissue damage, exaggerated barrier disruption, and impaired goblet cell responses (Muc2 and RELMβ). Immunostaining revealed S. Typhimurium penetrated the IECs of IEC-Myd88 −/− mice, unlike in WT mice, where they were sequestered to the lumen. When isolated crypts were assayed for their antimicrobial actions, crypts from IEC-Myd88 −/− mice were severely impaired in their antimicrobial activity against S. Typhimurium. We also examined whether MyD88 signaling in IECs impacted host defense against C. rodentium, with IEC-Myd88 −/− mice again suffering exaggerated tissue damage, impaired goblet cell responses, and reduced antimicrobial activity against C. rodentium. These results demonstrate that MyD88 signaling within IECs plays an important protective role at early stages of infection, influencing host susceptibility to infection by controlling the ability of the pathogen to reach and survive at the intestinal mucosal surface.


Infection and Immunity | 2015

The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host

Kirandeep Bhullar; Maryam Zarepour; Hongbing Yu; Hong Yang; Matthew A. Croxen; Martin Stahl; B. Brett Finlay; Stuart E. Turvey; Bruce A. Vallance

ABSTRACT Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed “protein involved in colonization,” or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicCs major role in vivo may be to limit C. rodentiums stimulation of the hosts innate immune system.


Gut microbes | 2015

Insights into Campylobacter jejuni colonization of the mammalian intestinal tract using a novel mouse model of infection

Martin Stahl; Bruce A. Vallance

A lack of relevant disease models for Campylobacter jejuni has long been an obstacle to research into this common enteric pathogen. We recently published that mice deficient in Single IgG Interleukin-1 related receptor (SIGIRR), a repressor of MyD88-dependent innate immune signaling, were highly susceptible to enteric infection by murine bacterial pathogens. Subsequently, we successfully employed these mice as an animal model for the human pathogen C. jejuni and gained substantial new insights into infection by this pathogen. The infected mice developed significant intestinal inflammation, primarily via TLR4 stimulation. Furthermore, the resulting gastroenteritis was dependent on C. jejuni pathogenesis as bacterial strains suffering mutations in key virulence factors were attenuated in causing disease. The ability to infect SIGIRR-deficient mice with C. jejuni sheds new light onto how these bacteria colonize the mucus layer of the intestinal tract, invade epithelial cells, and raises new prospects for studying the virulence strategies and pathogenesis of C. jejuni.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2017

A simple, cost-effective method for generating murine colonic 3D enteroids and 2D monolayers for studies of primary epithelial cell function

Elizabeth H. Fernando; Michael Dicay; Martin Stahl; Marilyn H. Gordon; Andrew Vegso; Cristiane H. Baggio; Laurie Alston; Fernando Lopes; Kristi Baker; Simon A. Hirota; Derek M. McKay; Bruce A. Vallance; Wallace K. MacNaughton

Cancer cell lines have been the mainstay of intestinal epithelial experimentation for decades, due primarily to their immortality and ease of culture. However, because of the inherent biological abnormalities of cancer cell lines, many cellular biologists are currently transitioning away from these models and toward more representative primary cells. This has been particularly challenging, but recent advances in the generation of intestinal organoids have brought the routine use of primary cells within reach of most epithelial biologists. Nevertheless, even with the proliferation of publications that use primary intestinal epithelial cells, there is still a considerable amount of trial and error required for laboratories to establish a consistent and reliable method to culture three-dimensional (3D) intestinal organoids and primary epithelial monolayers. We aim to minimize the time other laboratories spend troubleshooting the technique and present a standard method for culturing primary epithelial cells. Therefore, we have described our optimized, high-yield, cost-effective protocol to grow 3D murine colonoids for more than 20 passages and our detailed methods to culture these cells as confluent monolayers for at least 14 days, enabling a wide variety of potential future experiments. By supporting and expanding on the current literature of primary epithelial culture optimization and detailed use in experiments, we hope to help enable the widespread adoption of these innovative methods and allow consistency of results obtained across laboratories and institutions.NEW & NOTEWORTHY Primary intestinal epithelial monolayers are notoriously difficult to maintain culture, even with the recent advances in the field. We describe, in detail, the protocols required to maintain three-dimensional cultures of murine colonoids and passage these primary epithelial cells to confluent monolayers in a standardized, high-yield and cost-effective manner.


Infection and Immunity | 2016

The Helical Shape of Campylobacter jejuni Promotes In Vivo Pathogenesis by Aiding Transit through Intestinal Mucus and Colonization of Crypts

Martin Stahl; Emilisa Frirdich; Jenny Vermeulen; Yuliya Badayeva; Xiaoxia Li; Bruce A. Vallance; Erin C. Gaynor

ABSTRACT Campylobacter jejuni is a helix-shaped enteric bacterial pathogen and a common cause of gastroenteritis. We recently developed a mouse model for this human pathogen utilizing the SIGIRR-deficient mouse strain, which exhibits significant intestinal inflammation in response to intestinal C. jejuni infection. In the current study, this mouse model was used to define whether C. jejunis characteristic helical shape plays a role in its ability to colonize and elicit inflammation in the mouse intestine. Mice were infected with the previously characterized straight-rod Δpgp1 and Δpgp2 mutant strains, along with a newly characterized curved-rod Δ1228 mutant strain. We also compared the resultant infections and pathology to those elicited by the helix-shaped wild-type C. jejuni and complemented strains. Despite displaying wild-type colonization of the intestinal lumen, the straight-rod Δpgp1 and Δpgp2 mutants were essentially nonpathogenic, while all strains with a curved or helical shape retained their expected virulence. Furthermore, analysis of C. jejuni localization within the ceca of infected mice determined that the primary difference between the rod-shaped, nonpathogenic mutants and the helix-shaped, pathogenic strains was the ability to colonize intestinal crypts. Rod-shaped mutants appeared unable to colonize intestinal crypts due to an inability to pass through the intestinal mucus layer to directly contact the epithelium. Together, these results support a critical role for C. jejunis helical morphology in enabling it to traverse and colonize the mucus-filled intestinal crypts of their host, a necessary step required to trigger intestinal inflammation in response to C. jejuni.


Infection and Immunity | 2017

Tricellular Tight Junction Protein Tricellulin Is Targeted by the Enteropathogenic Escherichia coli Effector EspG1, Leading to Epithelial Barrier Disruption.

Vijay Morampudi; Franziska A. Graef; Martin Stahl; Udit Dalwadi; Victoria S. Conlin; Tina Huang; Bruce A. Vallance; Hong B. Yu; Kevan Jacobson

ABSTRACT Enteropathogenic Escherichia coli (EPEC)-induced diarrhea is often associated with disruption of intestinal epithelial tight junctions. Although studies have shown alterations in the expression and localization of bicellular tight junction proteins during EPEC infections, little is known about whether tricellular tight junction proteins (tTJs) are affected. Using Caco-2 cell monolayers, we investigated if EPEC is capable of targeting the tTJ protein tricellulin. Our results demonstrated that at 4 h postinfection, EPEC induced a significant reduction in tricellulin levels, accompanied by a significant loss of transepithelial resistance (TEER) and a corresponding increase in paracellular permeability. Conversely, cells overexpressing tricellulin were highly resistant to EPEC-induced barrier disruption. Confocal microscopy revealed the distribution of tricellulin into the plasma membrane of infected epithelial cells and confirmed the localization of EPEC aggregates in close proximity to tTJs. Moreover, infections with EPEC strains lacking genes encoding specific type III secreted effector proteins demonstrated a crucial role for the effector EspG1 in modulating tricellulin expression. Complementation studies suggest that the EspG-induced depletion of tricellulin is microtubule dependent. Overall, our results show that EPEC-induced epithelial barrier dysfunction is mediated in part by EspG1-induced microtubule-dependent depletion of tricellulin.


Journal of Immunology | 2013

Activation of p38α in T Cells Regulates the Intestinal Host Defense against Attaching and Effacing Bacterial Infections

Eun-Jin Shim; Bo Ram Bang; Seung-Goo Kang; Jianhui Ma; Motoyuki Otsuka; Jiman Kang; Martin Stahl; Jiahuai Han; Changchun Xiao; Bruce A. Vallance; Young Jun Kang

Intestinal infections by attaching and effacing (A/E) bacterial pathogens cause severe colitis and bloody diarrhea. Although p38α in intestinal epithelial cells (IEC) plays an important role in promoting protection against A/E bacteria by regulating T cell recruitment, its impact on immune responses remains unclear. In this study, we show that activation of p38α in T cells is critical for the clearance of the A/E pathogen Citrobacter rodentium. Mice deficient of p38α in T cells, but not in macrophages or dendritic cells, were impaired in clearing C. rodentium. Expression of inflammatory cytokines such as IFN-γ by p38α-deficient T cells was reduced, which further reduced the expression of inflammatory cytokines, chemokines, and antimicrobial peptide by IECs and led to reduced infiltration of T cells into the infected colon. Administration of IFN-γ activated the mucosal immunity to C. rodentium infection by increasing the expression of inflammation genes and the recruitment of T cells to the site of infection. Thus, p38α contributes to host defense against A/E pathogen infection by regulating the expression of inflammatory cytokines that activate host defense pathways in IECs.


Methods of Molecular Biology | 2017

Mouse Models for Campylobacter jejuni Colonization and Infection

Martin Stahl; Franziska A. Graef; Bruce A. Vallance

Relevant animal models for Campylobacter jejuni infection have been difficult to establish due to C. jejunis inability to cause disease in many common animal research models. Fortunately, recent work has proven successful in developing several new and relevant mouse models of C. jejuni infection, including the SIGIRR-deficient mouse strain that develops acute enterocolitis in response to C. jejuni. Here we describe how to properly infect mice with C. jejuni, as well as a number of accompanying histological techniques to aid in studying C. jejuni colonization and infection in mice.

Collaboration


Dive into the Martin Stahl's collaboration.

Top Co-Authors

Avatar

Bruce A. Vallance

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kevan Jacobson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Shauna M. Crowley

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ho Pan Sham

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Vijay Morampudi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ganive Bhinder

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Hong Yang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Udit Dalwadi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caixia Ma

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge