Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Stanulla is active.

Publication


Featured researches published by Martin Stanulla.


Blood | 2010

Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study

Valentino Conter; Claus R. Bartram; Maria Grazia Valsecchi; André Schrauder; Renate Panzer-Grümayer; Anja Möricke; Maurizio Aricò; Martin Zimmermann; Georg Mann; Giulio Rossi; Martin Stanulla; Franco Locatelli; Giuseppe Basso; Felix Niggli; Elena Barisone; Guenter Henze; Wolf-Dieter Ludwig; Oskar A. Haas; Giovanni Cazzaniga; Rolf Koehler; Daniela Silvestri; Jutta Bradtke; Rosanna Parasole; Rita Beier; Jacques J.M. van Dongen; Andrea Biondi; Martin Schrappe

The Associazione Italiana di Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Münster Acute Lymphoblastic Leukemia (AIEOP-BFM ALL 2000) study has for the first time introduced standardized quantitative assessment of minimal residual disease (MRD) based on immunoglobulin and T-cell receptor gene rearrangements as polymerase chain reaction targets (PCR-MRD), at 2 time points (TPs), to stratify patients in a large prospective study. Patients with precursor B (pB) ALL (n = 3184) were considered MRD standard risk (MRD-SR) if MRD was already negative at day 33 (analyzed by 2 markers, with a sensitivity of at least 10(-4)); MRD high risk (MRD-HR) if 10(-3) or more at day 78 and MRD intermediate risk (MRD-IR): others. MRD-SR patients were 42% (1348): 5-year event-free survival (EFS, standard error) is 92.3% (0.9). Fifty-two percent (1647) were MRD-IR: EFS 77.6% (1.3). Six percent of patients (189) were MRD-HR: EFS 50.1% (4.1; P < .001). PCR-MRD discriminated prognosis even on top of white blood cell count, age, early response to prednisone, and genotype. MRD response detected by sensitive quantitative PCR at 2 predefined TPs is highly predictive for relapse in childhood pB-ALL. The study is registered at http://clinicaltrials.gov: NCT00430118 for BFM and NCT00613457 for AIEOP.


Blood | 2008

Risk-Adjusted Therapy of Acute Lymphoblastic Leukemia Can Decrease Treatment Burden and Improve Survival: Treatment Results of 2169 Unselected Pediatric and Adolescent Patients Enrolled in the Trial ALL-BFM 95.

Anja Möricke; Alfred Reiter; Martin Zimmermann; Helmut Gadner; Martin Stanulla; Michael Dördelmann; Lutz Löning; Rita Beier; Wolf-Dieter Ludwig; Richard Ratei; Jochen Harbott; Joachim Boos; Georg Mann; Felix Niggli; Andreas Feldges; Günter Henze; Karl Welte; J.D. Beck; Thomas Klingebiel; Charlotte M. Niemeyer; Felix Zintl; Udo Bode; Christian Urban; Helmut Wehinger; Dietrich Niethammer; H. Riehm; Martin Schrappe

The trial ALL-BFM 95 for treatment of childhood acute lymphoblastic leukemia was designed to reduce acute and long-term toxicity in selected patient groups with favorable prognosis and to improve outcome in poor-risk groups by treatment intensification. These aims were pursued through a stratification strategy using white blood cell count, age, immunophenotype, treatment response, and unfavorable genetic aberrations providing an excellent discrimination of risk groups. Estimated 6-year event-free survival (6y-pEFS) for all 2169 patients was 79.6% (+/- 0.9%). The large standard-risk (SR) group (35% of patients) achieved an excellent 6y-EFS of 89.5% (+/- 1.1%) despite significant reduction of anthracyclines. In the medium-risk (MR) group (53% of patients), 6y-pEFS was 79.7% (+/- 1.2%); no improvement was accomplished by the randomized use of additional intermediate-dose cytarabine after consolidation. Omission of preventive cranial irradiation in non-T-ALL MR patients was possible without significant reduction of EFS, although the incidence of central nervous system relapses increased. In the high-risk (HR) group (12% of patients), intensification of consolidation/reinduction treatment led to considerable improvement over the previous ALL-BFM trials yielding a 6y-pEFS of 49.2% (+/- 3.2%). Compared without previous trial ALL-BFM 90, consistently favorable results in non-HR patients were achieved with significant treatment reduction in the majority of these patients.


Leukemia | 2010

Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000

Anja Möricke; Martin Zimmermann; Alfred Reiter; G Henze; André Schrauder; Helmut Gadner; W.-D. Ludwig; J. Ritter; Jochen Harbott; Georg Mann; Thomas Klingebiel; F Zintl; C. Niemeyer; Bernhard Kremens; Felix Niggli; D Niethammer; Karl Welte; Martin Stanulla; E Odenwald; Hansjörg Riehm; M Schrappe

Between 1981 and 2000, 6609 children (<18 years of age) were treated in five consecutive trials of the Berlin–Frankfurt–Münster (BFM) study group for childhood acute lymphoblastic leukemia (ALL). Patients were treated in up to 82 centers in Germany, Austria and Switzerland. Probability of 10-year event-free survival (EFS) (survival) improved from 65% (77%) in study ALL-BFM 81 to 78% (85%) in ALL-BFM 95. In parallel to relapse reduction, major efforts focused on reducing acute and late toxicity through advanced risk adaptation of treatment. The major findings derived from these ALL-BFM trials were as follows: (1) preventive cranial radiotherapy could be safely reduced to 12 Gy in T-ALL and high-risk (HR) ALL patients, and eliminated in non- HR non-T-ALL patients, if it was replaced by high-dose and intrathecal (IT) MTX; (2) omission of delayed re-intensification severely impaired outcome of low-risk patients; (3) 6-month-less maintenance therapy caused an increase in systemic relapses; (4) slow response to an initial 7-day prednisone window was identified as adverse prognostic factor; (5) condensed induction therapy resulted in significant improvement of outcome; (6) the daunorubicin dose in induction could be safely reduced in low-risk patients and (7) intensification of consolidation/re-intensification treatment led to considerable improvement of outcome in HR patients.


Leukemia | 2008

Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia

Thomas Flohr; André Schrauder; G Cazzaniga; Renate Panzer-Grümayer; V H J van der Velden; S Fischer; Martin Stanulla; G Basso; Felix Niggli; Beat W. Schäfer; Rosemary Sutton; Rolf Koehler; Martin Zimmermann; Maria Grazia Valsecchi; Helmut Gadner; Giuseppe Masera; M Schrappe; J J M van Dongen; Andrea Biondi; Claus R. Bartram

Detection of minimal residual disease (MRD) is the most sensitive method to evaluate treatment response and one of the strongest predictors of outcome in childhood acute lymphoblastic leukemia (ALL). The 10-year update on the I-BFM-SG MRD study 91 demonstrates stable results (event-free survival), that is, standard risk group (MRD-SR) 93%, intermediate risk group (MRD-IR) 74%, and high risk group (MRD-HR) 16%. In multicenter trial AIEOP-BFM ALL 2000, patients were stratified by MRD detection using quantitative PCR after induction (TP1) and consolidation treatment (TP2). From 1 July 2000 to 31 October 2004, PCR target identification was performed in 3341 patients: 2365 (71%) patients had two or more sensitive targets (⩽10−4), 671 (20%) patients revealed only one sensitive target, 217 (6%) patients had targets with lower sensitivity, and 88 (3%) patients had no targets. MRD-based risk group assignment was feasible in 2594 (78%) patients: 40% were classified as MRD-SR (two sensitive targets, MRD negativity at both time points), 8% as MRD-HR (MRD ⩾10−3 at TP2), and 52% as MRD-IR. The remaining 823 patients were stratified according to clinical risk features: HR (n=108) and IR (n=715). In conclusion, MRD-PCR-based stratification using stringent criteria is feasible in almost 80% of patients in an international multicenter trial.


The Lancet | 2008

Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome

Dani Bercovich; Ithamar Ganmore; Linda M. Scott; Gilad Wainreb; Yehudit Birger; Arava Elimelech; Chen Shochat; Giovanni Cazzaniga; Andrea Biondi; Giuseppe Basso; Gunnar Cario; Martin Schrappe; Martin Stanulla; Sabine Strehl; Oskar A. Haas; Georg Mann; Vera Binder; Arndt Borkhardt; Helena Kempski; Jan Trka; Bella Bielorei; Smadar Avigad; Batia Stark; Owen P. Smith; Nicole Dastugue; Jean Pierre Bourquin; Nir Ben Tal; Anthony R. Green; Shai Izraeli

BACKGROUND Children with Downs syndrome have a greatly increased risk of acute megakaryoblastic and acute lymphoblastic leukaemias. Acute megakaryoblastic leukaemia in Downs syndrome is characterised by a somatic mutation in GATA1. Constitutive activation of the JAK/STAT (Janus kinase and signal transducer and activator of transcription) pathway occurs in several haematopoietic malignant diseases. We tested the hypothesis that mutations in JAK2 might be a common molecular event in acute lymphoblastic leukaemia associated with Downs syndrome. METHODS JAK2 DNA mutational analysis was done on diagnostic bone marrow samples obtained from 88 patients with Downs syndrome-associated acute lymphoblastic leukaemia; and 216 patients with sporadic acute lymphoblastic leukaemia, Downs syndrome-associated acute megakaryoblastic leukaemia, and essential thrombocythaemia. Functional consequences of identified mutations were studied in mouse haematopoietic progenitor cells. FINDINGS Somatically acquired JAK2 mutations were identified in 16 (18%) patients with Downs syndrome-associated acute lymphoblastic leukaemia. The only patient with non-Downs syndrome-associated leukaemia but with a JAK2 mutation had an isochromosome 21q. Children with a JAK2 mutation were younger (mean [SE] age 4.5 years [0.86] vs 8.6 years [0.59], p<0.0001) at diagnosis. Five mutant alleles were identified, each affecting a highly conserved arginine residue (R683). These mutations immortalised primary mouse haematopoietic progenitor cells in vitro, and caused constitutive Jak/Stat activation and cytokine-independent growth of BaF3 cells, which was sensitive to pharmacological inhibition with JAK inhibitor I. In modelling studies of the JAK2 pseudokinase domain, R683 was situated in an exposed conserved region separated from the one implicated in myeloproliferative disorders. INTERPRETATION A specific genotype-phenotype association exists between the type of somatic mutation within the JAK2 pseudokinase domain and the development of B-lymphoid or myeloid neoplasms. Somatically acquired R683 JAK2 mutations define a distinct acute lymphoblastic leukaemia subgroup that is uniquely associated with trisomy 21. JAK2 inhibitors could be useful for treatment of this leukaemia. FUNDING Israel Trade Ministry, Israel Science Ministry, Jewish National Fund UK, Sam Waxman Cancer Research Foundation, Israel Science Foundation, Israel Cancer Association, Curtis Katz, Constantiner Institute for Molecular Genetics, German-Israel Foundation, and European Commission FP6 Integrated Project EUROHEAR.


Leukemia | 2006

The MLL recombinome of acute leukemias

Claus Meyer; Björn Schneider; S Jakob; Sabine Strehl; Andishe Attarbaschi; Susanne Schnittger; Claudia Schoch; M W J C Jansen; J J M van Dongen; M L den Boer; R Pieters; M-G Ennas; E Angelucci; U Koehl; Johann Greil; Frank Griesinger; U zur Stadt; C Eckert; T Szczepa nacute; ski; Felix Niggli; Beat W. Schäfer; H Kempski; Hjm Brady; Jan Zuna; J Trka; Luca Lo Nigro; Andrea Biondi; Eric Delabesse; E Macintyre

Chromosomal rearrangements of the human MLL gene are a hallmark for aggressive (high-risk) pediatric, adult and therapy-associated acute leukemias. These patients need to be identified in order to subject these patients to appropriate therapy regimen. A recently developed long-distance inverse PCR method was applied to genomic DNA isolated from individual acute leukemia patients in order to identify chromosomal rearrangements of the human MLL gene. We present data of the molecular characterization of 414 samples obtained from 272 pediatric and 142 adult leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) was determined and several new TPGs were identified. The combined data of our study and published data revealed a total of 87 different MLL rearrangements of which 51 TPGs are now characterized at the molecular level. Interestingly, the four most frequently found TPGs (AF4, AF9, ENL and AF10) encode nuclear proteins that are part of a protein network involved in histone H3K79 methylation. Thus, translocations of the MLL gene, by itself coding for a histone H3K4 methyltransferase, are presumably not randomly chosen, rather functionally selected.


Epidemiology | 2000

Estrogen metabolism and risk of breast cancer: A prospective study of the 2:16α-hydroxyestrone ratio in premenopausal and postmenopausal women

Paola Muti; H. Leon Bradlow; Andrea Micheli; Vittorio Krogh; Jo L. Freudenheim; Holger J. Schünemann; Martin Stanulla; Jun Yang; Daniel W. Sepkovic; Maurizio Trevisan; Franco Berrino

Experimental and clinical evidence suggests that 16&agr;-hydroxylated estrogen metabolites, biologically strong estrogens, are associated with breast cancer risk, while 2-hydroxylated metabolites, with lower estrogenic activity, are weakly related to this disease. This study analyzes the association of breast cancer risk with estrogen metabolism, expressed as the ratio of 2-hydroxyestrone to 16&agr;-hydroxyestrone, in a prospective nested case-control study. Between 1987 and 1992, 10,786 women (ages 35–69 years) were recruited to a prospective study on breast cancer in Italy, the “Hormones and Diet in the Etiology of Breast Cancer” (ORDET) study. Women with a history of cancer and women on hormone therapy were excluded at baseline. At recruitment, overnight urine was collected from all participants and stored at −80°C. After an average of 5.5 years of follow-up, 144 breast cancer cases and four matched controls for each case were identified among the participants of the cohort. Among premenopausal women, a higher ratio of 2-hydroxyestrone to 16&agr;-hydroxyestrone at baseline was associated with a reduced risk of breast cancer: women in the highest quintile of the ratio had an adjusted odds ratio (OR) for breast cancer of 0.58 [95% confidence interval (CI) = 0.25−1.34]. The corresponding adjusted OR in postmenopausal women was 1.29 (95% CI = 0.53–3.10). Results of this prospective study support the hypothesis that the estrogen metabolism pathway favoring 2-hydroxylation over 16&agr;-hydroxylation is associated with a reduced risk of invasive breast cancer risk in premenopausal women.


Blood | 2010

Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group.

Libi Hertzberg; Elena Vendramini; Ithamar Ganmore; Giovanni Cazzaniga; Maike Schmitz; Jane Chalker; Ruth Shiloh; Ilaria Iacobucci; Chen Shochat; Sharon Zeligson; Gunnar Cario; Martin Stanulla; Sabine Strehl; Lisa J. Russell; Christine J. Harrison; Beat C. Bornhauser; Akinori Yoda; Gideon Rechavi; Dani Bercovich; Arndt Borkhardt; Helena Kempski; Geertruy te Kronnie; Jean-Pierre Bourquin; Eytan Domany; Shai Izraeli

We report gene expression and other analyses to elucidate the molecular characteristics of acute lymphoblastic leukemia (ALL) in children with Down syndrome (DS). We find that by gene expression DS-ALL is a highly heterogeneous disease not definable as a unique entity. Nevertheless, 62% (33/53) of the DS-ALL samples analyzed were characterized by high expression of the type I cytokine receptor CRLF2 caused by either immunoglobulin heavy locus (IgH@) translocations or by interstitial deletions creating chimeric transcripts P2RY8-CRLF2. In 3 of these 33 patients, a novel activating somatic mutation, F232C in CRLF2, was identified. Consistent with our previous research, mutations in R683 of JAK2 were identified in 10 specimens (19% of the patients) and, interestingly, all 10 had high CRLF2 expression. Cytokine receptor-like factor 2 (CRLF2) and mutated Janus kinase 2 (Jak2) cooperated in conferring cytokine-independent growth to BaF3 pro-B cells. Intriguingly, the gene expression signature of DS-ALL is enriched with DNA damage and BCL6 responsive genes, suggesting the possibility of B-cell lymphocytic genomic instability. Thus, DS confers increased risk for genetically highly diverse ALLs with frequent overexpression of CRLF2, associated with activating mutations in the receptor itself or in JAK2. Our data also suggest that the majority of DS children with ALL may benefit from therapy blocking the CRLF2/JAK2 pathways.


Journal of Clinical Investigation | 2010

Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance

Laura Bonapace; Beat C. Bornhauser; Maike Schmitz; Gunnar Cario; Urs Ziegler; Felix Niggli; Beat W. Schäfer; Martin Schrappe; Martin Stanulla; Jean-Pierre Bourquin

In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL.


Molecular and Cellular Biology | 1997

DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis.

Martin Stanulla; Junjie Wang; David S. Chervinsky; Srinivas P. Thandla; Peter D. Aplan

A distinct population of therapy-related acute myeloid leukemia (t-AML) is strongly associated with prior administration of topoisomerase II (topo II) inhibitors. These t-AMLs display distinct cytogenetic alterations, most often disrupting the MLL gene on chromosome 11q23 within a breakpoint cluster region (bcr) of 8.3 kb. We recently identified a unique site within the MLL bcr that is highly susceptible to DNA double-strand cleavage by classic topo II inhibitors (e.g., etoposide and doxorubicin). Here, we report that site-specific cleavage within the MLL bcr can be induced by either catalytic topo II inhibitors, genotoxic chemotherapeutic agents which do not target topo II, or nongenotoxic stimuli of apoptotic cell death, suggesting that this site-specific cleavage is part of a generalized cellular response to an apoptotic stimulus. We also show that site-specific cleavage within the MLL bcr can be linked to the higher-order chromatin fragmentation that occurs during the initial stages of apoptosis, possibly through cleavage of DNA loops at their anchorage sites to the nuclear matrix. In addition, we show that site-specific cleavage is conserved between species, as specific DNA cleavage can also be demonstrated within the murine MLL locus. Lastly, site-specific cleavage during apoptosis can also be identified at the AML1 locus, a locus which is also frequently involved in chromosomal rearrangements present in t-AML patients. In conclusion, these results suggest the potential involvement of higher-order chromatin fragmentation which occurs as a part of a generalized apoptotic response in a mechanism leading to chromosomal translocation of the MLL and AML1 genes and subsequent t-AML.

Collaboration


Dive into the Martin Stanulla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Welte

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge