Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Steup is active.

Publication


Featured researches published by Martin Steup.


The Plant Cell | 2001

The Arabidopsis sex1 Mutant Is Defective in the R1 Protein, a General Regulator of Starch Degradation in Plants, and Not in the Chloroplast Hexose Transporter

Tien-Shin Yu; Heike Kofler; Rainer E. Häusler; Diana Hille; Ulf-Ingo Flügge; Samuel C. Zeeman; Alison M. Smith; Jens Kossmann; James R. Lloyd; Gerhard Ritte; Martin Steup; Wei-Ling Lue; Jychian Chen; Andreas P. M. Weber

Starch is the major storage carbohydrate in higher plants and of considerable importance for the human diet and for numerous technical applications. In addition, starch can be accumulated transiently in chloroplasts as a temporary deposit of carbohydrates during ongoing photosynthesis. This transitory starch has to be mobilized during the subsequent dark period. Mutants defective in starch mobilization are characterized by high starch contents in leaves after prolonged periods of darkness and therefore are termed starch excess (sex) mutants. Here we describe the molecular characterization of the Arabidopsis sex1 mutant that has been proposed to be defective in the export of glucose resulting from hydrolytic starch breakdown. The mutated gene in sex1 was cloned using a map-based cloning approach. By complementation of the mutant, immunological analysis, and analysis of starch phosphorylation, we show that sex1 is defective in the Arabidopsis homolog of the R1 protein and not in the hexose transporter. We propose that the SEX1 protein (R1) functions as an overall regulator of starch mobilization by controlling the phosphate content of starch.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The starch-related R1 protein is an α-glucan, water dikinase

Gerhard Ritte; James R. Lloyd; Nora Eckermann; Antje Rottmann; Jens Kossmann; Martin Steup

To determine the enzymatic function of the starch-related R1 protein it was heterologously expressed in Escherichia coli and purified to apparent homogeneity. Incubation of the purified protein with various phosphate donor and acceptor molecules showed that R1 is capable of phosphorylating glucosyl residues of α-glucans at both the C-6 and the C-3 positions in a ratio similar to that occurring naturally in starch. Phosphorylation occurs in a dikinase-type reaction in which three substrates, an α-polyglucan, ATP, and H2O, are converted into three products, an α-polyglucan-P, AMP, and orthophosphate. The use of ATP radioactively labeled at either the γ or β positions showed that solely the β phosphate is transferred to the α-glucan. The apparent Km of the R1 protein for ATP was calculated to be 0.23 μM and for amylopectin 1.7 mg⋅ml−1. The velocity of in vitro phosphorylation strongly depends on the type of the glucan. Glycogen was an extremely poor substrate; however, the efficiency of phosphorylation strongly increased if the glucan chains of glycogen were elongated by phosphorylase. Mg2+ ions proved to be essential for activity. Incubation of R1 with radioactively labeled ATP in the absence of an α-glucan showed that the protein phosphorylates itself with the β, but not with the γ phosphate. Autophosphorylation precedes the phosphate transfer to the glucan indicating a ping-pong reaction mechanism.


Plant Physiology | 2005

Identification of a Novel Enzyme Required for Starch Metabolism in Arabidopsis Leaves. The Phosphoglucan, Water Dikinase

Oliver Kötting; Kerstin Pusch; Axel Tiessen; Peter Geigenberger; Martin Steup; Gerhard Ritte

The phosphorylation of amylopectin by the glucan, water dikinase (GWD; EC 2.7.9.4) is an essential step within starch metabolism. This is indicated by the starch excess phenotype of GWD-deficient plants, such as the sex1-3 mutant of Arabidopsis (Arabidopsis thaliana). To identify starch-related enzymes that rely on glucan-bound phosphate, we studied the binding of proteins extracted from Arabidopsis wild-type leaves to either phosphorylated or nonphosphorylated starch granules. Granules prepared from the sex1-3 mutant were prephosphorylated in vitro using recombinant potato (Solanum tuberosum) GWD. As a control, the unmodified, phosphate free granules were used. An as-yet uncharacterized protein was identified that preferentially binds to the phosphorylated starch. The C-terminal part of this protein exhibits similarity to that of GWD. The novel protein phosphorylates starch granules, but only following prephosphorylation with GWD. The enzyme transfers the β-P of ATP to the phosphoglucan, whereas the γ-P is released as orthophosphate. Therefore, the novel protein is designated as phosphoglucan, water dikinase (PWD). Unlike GWD that phosphorylates preferentially the C6 position of the glucose units, PWD phosphorylates predominantly (or exclusively) the C3 position. Western-blot analysis of protoplast and chloroplast fractions from Arabidopsis leaves reveals a plastidic location of PWD. Binding of PWD to starch granules strongly increases during net starch breakdown. Transgenic Arabidopsis plants in which the expression of PWD was reduced by either RNAi or a T-DNA insertion exhibit a starch excess phenotype. Thus, in Arabidopsis leaves starch turnover requires a close collaboration of PWD and GWD.


The Plant Cell | 2009

STARCH-EXCESS4 Is a Laforin-Like Phosphoglucan Phosphatase Required for Starch Degradation in Arabidopsis thaliana

Oliver Kötting; Diana Santelia; Christoph Edner; Simona Eicke; Tina Marthaler; Matthew S. Gentry; Sylviane Comparot-Moss; Jychian Chen; Alison M. Smith; Martin Steup; Gerhard Ritte; Samuel C. Zeeman

Starch is the major storage carbohydrate in plants. It is comprised of glucans that form semicrystalline granules. Glucan phosphorylation is a prerequisite for normal starch breakdown, but phosphoglucan metabolism is not understood. A putative protein phosphatase encoded at the Starch Excess 4 (SEX4) locus of Arabidopsis thaliana was recently shown to be required for normal starch breakdown. Here, we show that SEX4 is a phosphoglucan phosphatase in vivo and define its role within the starch degradation pathway. SEX4 dephosphorylates both the starch granule surface and soluble phosphoglucans in vitro, and sex4 null mutants accumulate phosphorylated intermediates of starch breakdown. These compounds are linear α-1,4-glucans esterified with one or two phosphate groups. They are released from starch granules by the glucan hydrolases α-amylase and isoamylase. In vitro experiments show that the rate of starch granule degradation is increased upon simultaneous phosphorylation and dephosphorylation of starch. We propose that glucan phosphorylating enzymes and phosphoglucan phosphatases work in synergy with glucan hydrolases to mediate efficient starch catabolism.


Plant Physiology | 2007

Glucan, Water Dikinase Activity Stimulates Breakdown of Starch Granules by Plastidial β-Amylases

Christoph Edner; Jing Li; Tanja Albrecht; Sebastian Mahlow; Mahdi Hejazi; Hasnain Hussain; Fatma Kaplan; Charles L. Guy; Steven M. Smith; Martin Steup; Gerhard Ritte

Glucan phosphorylating enzymes are required for normal mobilization of starch in leaves of Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum), but mechanisms underlying this dependency are unknown. Using two different activity assays, we aimed to identify starch degrading enzymes from Arabidopsis, whose activity is affected by glucan phosphorylation. Breakdown of granular starch by a protein fraction purified from leaf extracts increased approximately 2-fold if the granules were simultaneously phosphorylated by recombinant potato glucan, water dikinase (GWD). Using matrix-assisted laser-desorption ionization mass spectrometry several putative starch-related enzymes were identified in this fraction, among them β-AMYLASE1 (BAM1; At3g23920) and ISOAMYLASE3 (ISA3; At4g09020). Experiments using purified recombinant enzymes showed that BAM1 activity with granules similarly increased under conditions of simultaneous starch phosphorylation. Purified recombinant potato ISA3 (StISA3) did not attack the granular starch significantly with or without glucan phosphorylation. However, starch breakdown by a mixture of BAM1 and StISA3 was 2 times higher than that by BAM1 alone and was further enhanced in the presence of GWD and ATP. Similar to BAM1, maltose release from granular starch by purified recombinant BAM3 (At4g17090), another plastid-localized β-amylase isoform, increased 2- to 3-fold if the granules were simultaneously phosphorylated by GWD. BAM activity in turn strongly stimulated the GWD-catalyzed phosphorylation. The interdependence between the activities of GWD and BAMs offers an explanation for the severe starch excess phenotype of GWD-deficient mutants.


FEBS Letters | 2006

Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases.

Gerhard Ritte; Matthias Heydenreich; Sebastian Mahlow; Sophie Haebel; Oliver Kötting; Martin Steup

Glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) are required for normal starch metabolism. We analysed starch phosphorylation in Arabidopsis wild‐type plants and mutants lacking either GWD or PWD using 31P NMR. Phosphorylation at both C6‐ and C3‐positions of glucose moieties in starch was drastically decreased in GWD‐deficient mutants. In starch from PWD‐deficient plants C3‐bound phosphate was reduced to levels close to the detection limit. The latter result contrasts with previous reports according to which GWD phosphorylates both C6‐ and C3‐positions. In these studies, phosphorylation had been analysed by HPLC of acid‐hydrolysed glucans. We now show that maltose‐6‐phosphate, a product of incomplete starch hydrolysis, co‐eluted with glucose‐3‐phosphate under the chromatographic conditions applied. Re‐examination of the specificity of the dikinases using an improved method demonstrates that C6‐ and C3‐phosphorylation is selectively catalysed by GWD and PWD, respectively.


Plant Molecular Biology | 1995

A SECOND L-TYPE ISOZYME OF POTATO GLUCAN PHOSPHORYLASE : CLONING, ANTISENSE INHIBITION AND EXPRESSION ANALYSIS

Uwe Sonnewald; Astrid Basner; Burkhard Greve; Martin Steup

In potato tubers two starch phosphorylase isozymes, types L and H, have been described and are believed to be responsible for the complete starch breakdown in this tissue. Type L has been localized in amyloplasts, whereas type H is located within the cytosol. In order to investigate whether the same isozymes are also present in potato leaf tissue a cDNA expression library from potato leaves was screened using a monoclonal antibody recognizing both isozyme forms. Besides the already described tuber L-type isozyme a cDNA clone encoding a second L-type isozyme was isolated. The 3171 nucleotide long cDNA clone contains an uninterrupted open reading frame of 2922 nucleotides which encodes a polypeptide of 974 amino acids. Sequence comparison between both L-type isozymes on the amino acid level showed that the polypeptides are highly homologous to each other, reaching 81–84% identity over most parts of the polypeptide. However the regions containing the transit peptide (amino acids 1–81) and the insertion sequence (amino acids 463–570) are highly diverse, reaching identities of only 22.0% and 29.0% respectively.Northern analysis revealed that both forms are differentially expressed. The steady-state mRNA levels of the tuber L-type isozyme accumulates strongly in potato tubers and only weakly in leaf tissues, whereas the mRNA of the leaf L-type isozyme accumulates in both tissues to the same extent. Constitutive expression of an antisense RNA specific for the leaf L-type gene resulted in a strong reduction of starch phosphorylase L-type activity in leaf tissue, but had only sparse effects in potato tuber tissues. Determination of the leaf starch content revealed that antisense repression of the starch phosphorylase activity has no significant influence on starch accumulation in leaves of transgenic potato plants. This result indicated that different L-type genes are responsible for the starch phosphorylase activity in different tissues, but the function of the different enzymes remains unclear.


Plant Physiology | 2004

Phosphorylation of Transitory Starch Is Increased during Degradation

Gerhard Ritte; Anke Scharf; Nora Eckermann; Sophie Haebel; Martin Steup

The starch excess phenotype of Arabidopsis mutants defective in the starch phosphorylating enzyme glucan, water dikinase (EC 2.7.9.4) indicates that phosphorylation of starch is required for its degradation. However, the underlying mechanism has not yet been elucidated. In this study, two in vivo systems have been established that allow the analysis of phosphorylation of transitory starch during both biosynthesis in the light and degradation in darkness. First, a photoautotrophic culture of the unicellular green alga Chlamydomonas reinhardtii was used to monitor the incorporation of exogenously supplied 32P orthophosphate into starch. Illuminated cells incorporated 32P into starch with a constant rate during 2 h. By contrast, starch phosphorylation in darkened cells exceeded that in illuminated cells within the first 30 min, but subsequently phosphate incorporation declined. Pulse-chase experiments performed with 32P/31P orthophosphate revealed a high turnover of the starch-bound phosphate esters in darkened cells but no detectable turnover in illuminated cells. Secondly, leaf starch granules were isolated from potato (Solanum tuberosum) plants grown under controlled conditions and glucan chains from the outer granule layer were released by isoamylase. Phosphorylated chains were purified and analyzed using high performance anion-exchange chromatography and matrix-assisted laser desorption/ionization mass spectrometry. Glucans released from the surface of starch granules that had been isolated from darkened leaves possessed a considerably higher degree of phosphorylation than those prepared from leaves harvested during the light period. Thus, in the unicellular alga as well as in potato leaves, net starch degradation is accompanied with an increased phosphorylation of starch.


Plant Physiology | 2013

Feedback Inhibition of Starch Degradation in Arabidopsis Leaves Mediated by Trehalose 6-Phosphate

Marina Camara Mattos Martins; Mahdi Hejazi; Joerg Fettke; Martin Steup; Regina Feil; Ursula Krause; Stéphanie Arrivault; Daniel Vosloh; Carlos M. Figueroa; Alexander Ivakov; Umesh Prasad Yadav; Maria Piques; Daniela Metzner; Mark Stitt; John E. Lunn

Trehalose 6-phosphate inhibits the nighttime breakdown of transitory starch in leaves, potentially linking starch remobilization to sucrose demand for respiration and growth at night. Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced overexpression of trehalose-phosphate synthase during the day increased Tre6P levels up to 11-fold. There was a transient increase in the rate of starch accumulation in the middle of the day, but this was not linked to reductive activation of ADP-glucose pyrophosphorylase. A 2- to 3-fold increase in Tre6P during the night led to significant inhibition of starch degradation. Maltose and maltotriose did not accumulate, suggesting that Tre6P affects an early step in the pathway of starch degradation in the chloroplasts. Starch granules isolated from induced plants had a higher orthophosphate content than granules from noninduced control plants, consistent either with disruption of the phosphorylation-dephosphorylation cycle that is essential for efficient starch breakdown or with inhibition of starch hydrolysis by β-amylase. Nonaqueous fractionation of leaves showed that Tre6P is predominantly located in the cytosol, with estimated in vivo Tre6P concentrations of 4 to 7 µm in the cytosol, 0.2 to 0.5 µm in the chloroplasts, and 0.05 µm in the vacuole. It is proposed that Tre6P is a component in a signaling pathway that mediates the feedback regulation of starch breakdown by sucrose, potentially linking starch turnover to demand for sucrose by growing sink organs at night.


Plant Physiology | 2010

A Putative Phosphatase, LSF1, Is Required for Normal Starch Turnover in Arabidopsis Leaves

Sylviane Comparot-Moss; Oliver Kötting; Michaela Stettler; Christoph Edner; Alexander Graf; Sean E. Weise; Sebastian Streb; Wei Ling Lue; Daniel MacLean; Sebastian Mahlow; Gerhard Ritte; Martin Steup; Jychian Chen; Samuel C. Zeeman; Alison M. Smith

A putative phosphatase, LSF1 (for LIKE SEX4; previously PTPKIS2), is closely related in sequence and structure to STARCH-EXCESS4 (SEX4), an enzyme necessary for the removal of phosphate groups from starch polymers during starch degradation in Arabidopsis (Arabidopsis thaliana) leaves at night. We show that LSF1 is also required for starch degradation: lsf1 mutants, like sex4 mutants, have substantially more starch in their leaves than wild-type plants throughout the diurnal cycle. LSF1 is chloroplastic and is located on the surface of starch granules. lsf1 and sex4 mutants show similar, extensive changes relative to wild-type plants in the expression of sugar-sensitive genes. However, although LSF1 and SEX4 are probably both involved in the early stages of starch degradation, we show that LSF1 neither catalyzes the same reaction as SEX4 nor mediates a sequential step in the pathway. Evidence includes the contents and metabolism of phosphorylated glucans in the single mutants. The sex4 mutant accumulates soluble phospho-oligosaccharides undetectable in wild-type plants and is deficient in a starch granule-dephosphorylating activity present in wild-type plants. The lsf1 mutant displays neither of these phenotypes. The phenotype of the lsf1/sex4 double mutant also differs from that of both single mutants in several respects. We discuss the possible role of the LSF1 protein in starch degradation.

Collaboration


Dive into the Martin Steup's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven G. Ball

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge