Martin ter Beest
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin ter Beest.
Scientific Reports | 2016
Ilse Dingjan; Daniëlle R.J. Verboogen; Laurent M. Paardekooper; Natalia H. Revelo; Simone P. Sittig; Linda J. Visser; Gabriele Fischer von Mollard; Stefanie S. V. Henriet; Carl G. Figdor; Martin ter Beest; Geert van den Bogaart
Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer.
Communicative & Integrative Biology | 2014
Maksim V. Baranov; Martin ter Beest; Geert van den Bogaart
We recently identified a novel role for podosomes in antigen sampling. Podosomes are dynamic cellular structures that consist of point-like concentrations of actin surrounded by integrins and adaptor proteins such as vinculin and talin. Podosomes establish cellular contact with the extracellular matrix (ECM) and facilitate cell migration via ECM degradation. In our recent paper, we studied podosomes of human dendritic cells (DCs), major antigen presenting cells (APC) that take-up, process, and present foreign antigen to naive T-cells. We employed gelatin-impregnated porous polycarbonate filters to demonstrate that the mechanosensitive podosomes of DCs selectively localize to regions of low-physical resistance such as the filter pores. After degradation of the gelatin, podosomes increasingly protrude into the lumen of these pores. These protrusive podosome-derived structures contain several endocytic and early endosomal markers such as clathrin, Rab5, and VAMP3, and, surprisingly, also contain C-type lectins, a type of pathogen recognition receptors (PRRs). Finally, we performed functional uptake experiments to demonstrate that these PRRs facilitate uptake of antigen from the opposite side of the filter. Our data provide mechanistic insight in how dendritic cells sample for antigen across epithelial barriers for instance from the lumen of the lung and gut.
Journal of Cell Science | 2017
Ilse Dingjan; Peter T. A. Linders; Luuk van den Bekerom; Maksim V. Baranov; Partho Halder; Martin ter Beest; Geert van den Bogaart
ABSTRACT In dendritic cells, the NADPH oxidase 2 complex (NOX2) is recruited to the phagosomal membrane during antigen uptake. NOX2 produces reactive oxygen species (ROS) in the lumen of the phagosome that kill ingested pathogens, delay antigen breakdown and alter the peptide repertoire for presentation to T cells. How the integral membrane component of NOX2, cytochrome b558 (which comprises CYBB and CYBA), traffics to phagosomes is incompletely understood. In this study, we show in dendritic cells derived from human blood-isolated monocytes that cytochrome b558 is initially recruited to the phagosome from the plasma membrane during phagosome formation. Cytochrome b558 also traffics from a lysosomal pool to phagosomes and this is required to replenish oxidatively damaged NOX2. We identified syntaxin-7, SNAP23 and VAMP8 as the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediating this process. Our data describe a key mechanism of how dendritic cells sustain ROS production after antigen uptake that is required to initiate T cell responses. Highlighted Article: In human dendritic cells, the membrane component of the NADPH oxidase NOX2 complex is initially recruited to phagosomes from the plasma membrane, and oxidized NOX2 complex subunits are replenished from a lysosomal pool.
Cell Reports | 2016
Maksim V. Baranov; Natalia H. Revelo; Ilse Dingjan; Riccardo Maraspini; Martin ter Beest; Alf Honigmann; Geert van den Bogaart
Summary Actin plays a critical role during the early stages of pathogenic microbe internalization by immune cells. In this study, we identified a key mechanism of actin filament tethering and stabilization to the surface of phagosomes in human dendritic cells. We found that the actin-binding protein SWAP70 is specifically recruited to nascent phagosomes by binding to the lipid phosphatidylinositol (3,4)-bisphosphate. Multi-color super-resolution stimulated emission depletion (STED) microscopy revealed that the actin cage surrounding early phagosomes is formed by multiple concentric rings containing SWAP70. SWAP70 colocalized with and stimulated activation of RAC1, a known activator of actin polymerization, on phagosomes. Genetic ablation of SWAP70 impaired actin polymerization around phagosomes and resulted in a phagocytic defect. These data show a key role for SWAP70 as a scaffold for tethering the peripheral actin cage to phagosomes.
eLife | 2017
Daniëlle R.J. Verboogen; Natalia González Mancha; Martin ter Beest; Geert van den Bogaart
SNARE proteins play a crucial role in intracellular trafficking by catalyzing membrane fusion, but assigning SNAREs to specific intracellular transport routes is challenging with current techniques. We developed a novel Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM)-based technique allowing visualization of real-time local interactions of fluorescently tagged SNARE proteins in live cells. We used FRET-FLIM to delineate the trafficking steps underlying the release of the inflammatory cytokine interleukin-6 (IL-6) from human blood-derived dendritic cells. We found that activation of dendritic cells by bacterial lipopolysaccharide leads to increased FRET of fluorescently labeled syntaxin 4 with VAMP3 specifically at the plasma membrane, indicating increased SNARE complex formation, whereas FRET with other tested SNAREs was unaltered. Our results revealed that SNARE complexing is a key regulatory step for cytokine production by immune cells and prove the applicability of FRET-FLIM for visualizing SNARE complexes in live cells with subcellular spatial resolution. DOI: http://dx.doi.org/10.7554/eLife.23525.001
Scientific Reports | 2017
Laurent M. Paardekooper; Geert van den Bogaart; Matthijs Kox; Ilse Dingjan; Anne H. Neerincx; Maura B. Bendix; Martin ter Beest; Frans J. M. Harren; Terence H. Risby; Peter Pickkers; Nandor Marczin; Simona M. Cristescu
Ethylene is a major plant hormone mediating developmental processes and stress responses to stimuli such as infection. We show here that ethylene is also produced during systemic inflammation in humans and is released in exhaled breath. Traces of ethylene were detected by laser spectroscopy both in vitro in isolated blood leukocytes exposed to bacterial lipopolysaccharide (LPS) as well as in vivo following LPS administration in healthy volunteers. Exposure to LPS triggers formation of ethylene as a product of lipid peroxidation induced by the respiratory burst. In humans, ethylene was detected prior to the increase of blood levels of inflammatory cytokines and stress-related hormones. Our results highlight that ethylene release is an early and integral component of in vivo lipid peroxidation with important clinical implications as a breath biomarker of bacterial infection.
FEBS Letters | 2018
Daniëlle R.J. Verboogen; Martin ter Beest; Alf Honigmann; Geert van den Bogaart
Immune cells communicate by releasing large quantities of cytokines. Although the mechanisms of cytokine secretion are increasingly understood, quantitative knowledge of the number of cytokines per vesicle is still lacking. Here, we measured with quantitative microscopy the release rate of vesicles potentially carrying interleukin‐6 (IL‐6) in human dendritic cells. By comparing this to the total secreted IL‐6, we estimate that secretory vesicles contain about 0.5–3 IL‐6 molecules, but with a large spread among cells/donors. Moreover, IL‐6 did not accumulate within most cells, indicating that synthesis and not trafficking is the bottleneck for IL‐6 production. IL‐6 accumulated in the Golgi apparatus only in ~ 10% of the cells. Understanding how immune cells produce cytokines is important for designing new immunomodulatory drugs.
European Journal of Cell Biology | 2017
Ilse Dingjan; Laurent M. Paardekooper; Daniëlle R.J. Verboogen; Gabriele Fischer von Mollard; Martin ter Beest; Geert van den Bogaart
Highlights • Climbing beans produced more than bush beans for 80% of the farmers.• Both bean and maize responded positively to DAP fertilizer in 60% of the farms.• Early planting increased fertilizer effects in bean-maize rotations.• DAP is more profitable in climbing bean-rotation than in bush bean-maize rotation.
Physiological Reviews | 2018
Ilse Dingjan; Peter T. A. Linders; Daniëlle R.J. Verboogen; Natalia H. Revelo; Martin ter Beest; Geert van den Bogaart
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Journal of Molecular Cell Biology | 2018
Daniëlle R.J. Verboogen; Natalia H. Revelo; Martin ter Beest; Geert van den Bogaart
Abstract Cells producing cytokines often express the receptor for the same cytokine, which makes them prone to autocrine signaling. How cytokine release and signaling are regulated in the same cell is not understood. In this study, we demonstrate that signaling by exogenous and self-synthesized inflammatory cytokine interleukin-6 (IL-6) within endosomal compartments acts as a cellular brake that limits the synthesis of IL-6. Our data show that IL-6 is internalized by dendritic cells and signals from endosomal compartments containing the IL-6 receptor. Newly synthesized IL-6 also traffics via these endosomal compartments and signals in transit to the plasma membrane. This allows activation of STAT3 which in turn limits toll-like receptor 4 stimulant lipopolysaccharide (LPS) triggered transcription of IL-6. Long-term exposure to LPS removes this brake via inhibition of STAT3 by increased expression of suppressor of cytokine signaling 3 and results in fully fledged IL-6 production. This transient regulation could prevent excessive IL-6 production during early infections.