Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin W. Ganal is active.

Publication


Featured researches published by Martin W. Ganal.


Molecular Genetics and Genomics | 1995

Abundance, variability and chromosomal location of microsatellites in wheat

Marion S. Röder; J. Plaschke; Susanne U. König; A. Börner; Mark E. Sorrells; Steven D. Tanksley; Martin W. Ganal

The potential of microsatellite sequences as genetic markers in hexaploid wheat (Triticum aestivum) was investigated with respect to their abundance, variability, chromosomal location and usefulness in related species. By screening a lambda phage library, the total number of (GA)n blocks was estimated to be 3.6 x 104 and the number of (GT)n blocks to be 2.3 x 104 per haploid wheat genome. This results in an average distance of approximately 270 kb between these two microsatellite types combined. Based on sequence analysis data from 70 isolated microsatellites, it was found that wheat microsatellites are relatively long containing up to 40 dinucleotide repeats. Of the tested primer pairs, 36% resulted in fragments with a size corresponding to the expected length of the sequenced microsatellite clone. The variability of 15 microsatellite markers was investigated on 18 wheat accessions. Significantly, more variation was detected with the microsatellite markers than with RFLP markers with, on average, 4.6 different alleles per microsatellite. The 15 PCR-amplified microsatellites were further localized on chromosome arms using cytogenetic stocks of Chinese Spring. Finally, the primers for the 15 wheat microsatellites were used for PCR amplification with rye (Secale cereale) and barley accessions (Hordeum vulgare, H. spontaneum). Amplified fragments were observed for ten primer pairs with barley DNA and for nine primer pairs with rye DNA as template. A microsatellite was found by dot blot analysis in the PCR products of barley and rye DNA for only one primer pair.


Theoretical and Applied Genetics | 1995

Detection of genetic diversity in closely related bread wheat using microsatellite markers.

J. Plaschke; Martin W. Ganal; Marion S. Röder

Wheat microsatellites (WMS) were used to estimate the extent of genetic diversity among 40 wheat cultivars and lines, including mainly European elite material. The 23 WMS used were located on 15 different chromosomes, and revealed a total of 142 alleles. The number of alleles ranged from 3 to 16, with an average of 6.2 alleles per WMS. The average dinucleotide repeat number ranged from 13 to 41. The correlation coefficient between the number of alleles and the average number of repeats was only slight (rs = 0.55). Based on percentage difference a dendrogram is presented, calculated by the WMS-derived data. All but two of the wheat cultivars and lines could be distinguished. Some of the resulting groups are strongly related to the pedigrees of the appropriate cultivars. Values for co-ancestry (f) of 179 pairs of cultivars related by their pedigrees (f⩾0.1) averaged 0.29. Genetic similarity (GS) based on WMS of the same pairs averaged 0.44. The rank correlation for these pairs was slight, with rs = 0.55, but highly significant (P<0.001). The results suggest that a relatively small number of microsatellites can be used for the estimation of genetic diversity and cultivar identification in elite material of hexaploid bread wheat.


Theoretical and Applied Genetics | 1991

RFLP maps of potato and their alignment with the homoeologous tomato genome

Christiane Gebhardt; Enrique Ritter; Amalia Barone; T. Debener; Birgit Walkemeier; U. Schachtschabel; H. Kaufmann; R. D. Thompson; M. W. Bonierbale; Martin W. Ganal; Steven D. Tanksley; Francesco Salamini

SummaryAn RFLP linkage map of the potato is presented which comprises 304 loci derived from 230 DNA probes and one morphological marker (tuber skin color). The self-incompatibility locus of potato was mapped to chromosome I, which is homoeologous to tomato chromosome I. By mapping chromosome-specific tomato RFLP markers in potato and, vice versa, potato markers in tomato, the different potato and tomato RFLP maps were aligned to each other and the similarity of the potato and tomato genome was confirmed. The numbers given to the 12 potato chromosomes are now in accordance with the established tomato nomenclature. Comparisons between potato RFLP maps derived from different genetic backgrounds revealed conservation of marker order but differences in chromosome and total map length. In particular, significant reduction of map length was observed in interspecific compared to intraspecific crosses. The distribution of regions with distorted segregation ratios in the genome was analyzed for four potato parents. The most prominent distortion of recombination was found to be caused by the self-incompatibility locus.


PLOS ONE | 2011

A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome

Martin W. Ganal; Gregor Durstewitz; Andreas Polley; Aurélie Bérard; Edward S. Buckler; Alain Charcosset; Joseph Clarke; Eva-Maria Graner; Mark Hansen; Johann Joets; Marie-Christine Le Paslier; Michael D. McMullen; Pierre Montalent; Mark S. Rose; Chris-Carolin Schön; Qi Sun; Hildrun Walter; Olivier C. Martin; Matthieu Falque

SNP genotyping arrays have been useful for many applications that require a large number of molecular markers such as high-density genetic mapping, genome-wide association studies (GWAS), and genomic selection. We report the establishment of a large maize SNP array and its use for diversity analysis and high density linkage mapping. The markers, taken from more than 800,000 SNPs, were selected to be preferentially located in genes and evenly distributed across the genome. The array was tested with a set of maize germplasm including North American and European inbred lines, parent/F1 combinations, and distantly related teosinte material. A total of 49,585 markers, including 33,417 within 17,520 different genes and 16,168 outside genes, were of good quality for genotyping, with an average failure rate of 4% and rates up to 8% in specific germplasm. To demonstrate this arrays use in genetic mapping and for the independent validation of the B73 sequence assembly, two intermated maize recombinant inbred line populations – IBM (B73×Mo17) and LHRF (F2×F252) – were genotyped to establish two high density linkage maps with 20,913 and 14,524 markers respectively. 172 mapped markers were absent in the current B73 assembly and their placement can be used for future improvements of the B73 reference sequence. Colinearity of the genetic and physical maps was mostly conserved with some exceptions that suggest errors in the B73 assembly. Five major regions containing non-colinearities were identified on chromosomes 2, 3, 6, 7 and 9, and are supported by both independent genetic maps. Four additional non-colinear regions were found on the LHRF map only; they may be due to a lower density of IBM markers in those regions or to true structural rearrangements between lines. Given the arrays high quality, it will be a valuable resource for maize genetics and many aspects of maize breeding.


Theoretical and Applied Genetics | 2002

Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers

Xiu-Qiang Huang; A. Börner; Marion S. Röder; Martin W. Ganal

Abstract.A set of 24 wheat microsatellite markers, representing at least one marker from each chromosome, was used for the assessment of genetic diversity in 998 accessions of hexaploid bread wheat (Triticum aestivum L.) which originated from 68 countries of five continents. A total of 470 alleles were detected with an average allele number of 18.1 per locus. The highest number of alleles per locus was detected in the B genome with 19.9, compared to 17.4 and 16.5 for genomes A and D, respectively. The lowest allele number per locus among the seven homoeologous groups was observed in group 4. Greater genetic variation exists in the non-centromeric regions than in the centromeric regions of chromosomes. Allele numbers increased with the repeat number of the microsatellites used and their relative distance from the centromere, and was not dependent on the motif of microsatellites. Gene diversity was correlated with the number of alleles. Gene diversity according to Nei for the 26 microsatellite loci varied from 0.43 to 0.94 with an average of 0.77, and was 0.78, 0.81 and 0.73 for three genomes A, B and D, respectively. Alleles for each locus were present in regular two or three base-pair steps, indicating that the genetic variation during the wheat evolution occurred step by step in a continuous manner. In most cases, allele frequencies showed a normal distribution. Comparative analysis of microsatellite diversity among the eight geographical regions revealed that the accessions from the Near East and the Middle East exhibited more genetic diversity than those from the other regions. Greater diversity was found in Southeast Europe than in North and Southwest Europe. The present study also indicates that microsatellite markers permit the fast and high throughput fingerprinting of large numbers of accessions from a germplasm collection in order to assess genetic diversity.


Current Opinion in Plant Biology | 2009

SNP identification in crop plants.

Martin W. Ganal; Thomas Altmann; Marion S. Röder

In many plants, single nucleotide polymorphism (SNP) markers are increasingly becoming the marker system of choice. However, for many crop plants there are surprisingly low numbers of validated SNP markers available although they are needed in large numbers for studies regarding genetic variation, linkage mapping, population structure analysis, association genetics, map-based gene isolation, and plant breeding. This review summarizes the current status of SNP marker development technologies for major crop plants. It will also provide an outlook into the future regarding possible SNP identification approaches in crop plants on the basis of current development in model systems such as Arabidopsis which will become available with the full sequencing of more plant genomes, genome resequencing, and in conjunction with the next-generation sequencing technologies.


Theoretical and Applied Genetics | 1998

Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.)

Viktor Korzun; Marion S. Röder; Martin W. Ganal; A. J. Worland; C. N. Law

Abstract Two sets of single chromosome recombinant lines comparing 2D chromosomes from the wheat varieties ‘Ciano 67’ and ‘Mara’ with the common 2D chromosome of ‘Cappelle-Desprez’ in a ‘Cappelle-Desprez’ background were used to detect a diagnostic wheat microsatellite marker for the dwarfing gene Rht8. The genetic linkage maps place the wheat microsatellite marker WMS 261 0.6 cM distal to Rht8 on the short arm of chromosome 2D. By PCR analysis the WMS 261 alleles of ‘Mara’, ‘Cappelle-Desprez’ and ‘Ciano 67’ could be distinguished by different fragment sizes of 192 bp, 174 bp and 165 bp, respectively. A screen of over 100 international varieties of wheat showed that the three allelic variants were all widespread. It also demonstrated that a limited number of varieties carried novel WMS 261 variants of over 200 bp. Following classification of the individual recombinant lines for allelic variants at the WMS 261 locus it was possible to attribute a 7- to 8-cm reduction in plant height with the WMS 261-192-bp allele compared to the WMS 261-174-bp allele in the set of recombinant lines comparing 2D chromosomes of ‘Mara’ and ‘Cappelle-Desprez’. A height reduction of around 3 cm was detected between the WMS 261-174-bp allele and the WMS 261-165-bp allele in the recombinant lines comparing 2D chromosomes of ‘Cappelle-Desprez’ and ‘Ciano 67’.


Nature Genetics | 2012

Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley

Jordi Comadran; Benjamin Kilian; Joanne Russell; Luke Ramsay; Nils Stein; Martin W. Ganal; Paul D. Shaw; Micha Bayer; W. T. B. Thomas; David Marshall; Peter E. Hedley; Alessandro Tondelli; N. Pecchioni; Enrico Francia; Viktor Korzun; Alexander Walther; Robbie Waugh

As early farming spread from the Fertile Crescent in the Near East around 10,000 years before the present, domesticated crops encountered considerable ecological and environmental change. Spring-sown crops that flowered without the need for an extended period of cold to promote flowering and day length–insensitive crops able to exploit the longer, cooler days of higher latitudes emerged and became established. To investigate the genetic consequences of adaptation to these new environments, we identified signatures of divergent selection in the highly differentiated modern-day spring and winter barleys. In one genetically divergent region, we identify a natural variant of the barley homolog of Antirrhinum CENTRORADIALIS (HvCEN) as a contributor to successful environmental adaptation. The distribution of HvCEN alleles in a large collection of wild and landrace accessions indicates that this involved selection and enrichment of preexisting genetic variants rather than the acquisition of mutations after domestication.


Plant Molecular Biology | 1991

Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA.

Ramon Messeguer; Martin W. Ganal; John C. Steffens; Steven D. Tanksley

The tomato nuclear genome was determined to have a G+C content of 37% which is among the lowest reported for any plant species. Non-coding regions have a G+C content even lower (32% average) whereas coding regions are considerably richer in G+C (46%).5-methyl cytosine was the only modified base detected and on average 23% of the cytosine residues are methylated. Immature tissues and protoplasts have significantly lower levels of cytosine methylation (average 20%) than mature tissues (average 25%). Mature pollen has an intermediate level of methylation (22%). Seeds gave the highest value (27%), suggesting de novo methylation after pollination and during seed development.Based on isoschizomer studies we estimate 55% of the CpG target sites (detected by Msp I/Hpa II) and 85% of the CpNpG target sites (detected by Bst NI/Eco RI)are methylated. Unmethylated target sites (both CpG and CpNpG) are not randomly distributed throughout the genome, but frequently occur in clusters. These clusters resemble CpG islands recently reported in maize and tobacco.The low G+C content and high levels of cytosine methylation in tomato may be due to previous transitions of 5mC→T. This is supported by the fact that G+C levels are lowest in non-coding portions of the genome in which selection is relaxed and thus transitions are more likely to be tolerated. This hypothesis is also supported by the general deficiency of methylation target sites in the tomato genome, especially in non-coding regions.Using methylation isoschizomers and RFLP analysis we have also determined that polymorphism between plants, for cytosine methylation at allelic sites, is common in tomato. Comparing DNA from two tomato species, 20% of the polymorphisms detected by Bst NI/Eco RII could be attributed to differential methylation at the CpNpG target sites. With Msp I/Hpa II, 50% of the polymorphisms were attributable to methylation (CpG and CpNpG sites). Moreover, these polymorphisms were demonstrated to be inherited in a mendelian fashion and to co-segregate with the methylation target site and thus do not represent variation for transacting factors that might be involved in methylation of DNA. The potential role of heritable methylation polymorphism in evolution of gene regulation and in RFLP studies is discussed.


Theoretical and Applied Genetics | 2004

Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivumL.)

Xiu-Qiang Huang; H. Kempf; Martin W. Ganal; Marion S. Röder

We report here the second advanced backcross quantitative trait locus (AB-QTL) analysis carried out in winter wheat. Seven agronomic traits were studied in a BC2F1population derived from a cross between the German winter wheat variety Flair and the synthetic wheat line XX86 developed in Japan. We selected 111 BC2F1 lines and genotyped these with 197 microsatellite markers. Field data for seven agronomic traits were collected from corresponding BC2F3 families that were grown at up to six locations in Germany. QTL analyses for yield and yield components were performed using single-marker regression and interval mapping. A total of 57 putative QTLs derived from XX86 were detected, of which 24 (42.1%) were found to have a positive effect from the synthetic wheat XX86. These favourable QTLs were mainly associated with thousand-grain weight and grain weight per ear. Many QTLs for correlated traits were mapped in similar chromosomal regions. The AB-QTL data obtained in the present study are discussed and compared with results from previous QTL analyses.

Collaboration


Dive into the Martin W. Ganal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiu-Qiang Huang

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge