Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin W. Hahn is active.

Publication


Featured researches published by Martin W. Hahn.


Applied and Environmental Microbiology | 2003

Isolation of Novel Ultramicrobacteria Classified as Actinobacteria from Five Freshwater Habitats in Europe and Asia

Martin W. Hahn; Heinrich Lünsdorf; Qinglong L. Wu; Michael Schauer; Manfred G. Höfle; Jens Boenigk; Peter Stadler

ABSTRACT We describe the first freshwater members of the class Actinobacteria that have been isolated. Nine ultramicro-size (<0.1 μm3) strains were isolated from five freshwater habitats in Europe and Asia. These habitats represent a broad spectrum of ecosystems, ranging from deep oligotrophic lakes to shallow hypertrophic lakes. Even when the isolated strains were grown in very rich media, the cell size was <0.1 μm3 and was indistinguishable from the cell sizes of bacteria belonging to the smaller size classes of natural lake bacterioplankton. Hybridization of the isolates with oligonucleotide probes and phylogenetic analysis of the 16S rRNA gene sequences of the isolated strains revealed that they are affiliated with the class Actinobacteria and the family Microbacteriaceae. The previously described species with the highest levels of sequence similarity are Clavibacter michiganensis and Rathayibacter tritici, two phytopathogens of terrestrial plants. The 16S rRNA gene sequences of the nine isolates examined are more closely related to cloned sequences from uncultured freshwater bacteria than to the sequences of any previously isolated bacteria. The nine ultramicrobacteria isolated form, together with several uncultured bacteria, a diverse phylogenetic cluster (Luna cluster) consisting exclusively of freshwater bacteria. Isolates obtained from lakes that are ecologically different and geographically separated by great distances possess identical 16S rRNA gene sequences but have clearly different ecophysiological and phenotypic traits. Predator-prey experiments demonstrated that at least one of the ultramicro-size isolates is protected against predation by the bacterivorous nanoflagellate Ochromonas sp. strain DS.


Applied and Environmental Microbiology | 2006

Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the tibetan plateau, China

Qinglong L. Wu; Gabriel Zwart; Michael Schauer; Miranda P. Kamst-van Agterveld; Martin W. Hahn

ABSTRACT The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was investigated. Three different methods, fluorescent in situ hybridization, denaturing gradient gel electrophoresis (DGGE) with subsequent band sequencing, and reverse line blot hybridization (RLB) with probes targeting 17 freshwater bacterial groups, were used for analysis of BCC. Furthermore, the salt tolerances of 47 strains affiliated with groups detected in or isolated from the Tibetan habitats were investigated. Altitude was not found to influence BCC significantly within the investigated range. Several groups of typical freshwater bacteria, e.g., the ACK-M1 cluster and the Polynucleobacter group, were detected in habitats located above 4,400 m. Salinity was found to be the dominating environmental factor controlling BCC in the investigated lakes, resulting in only small overlaps in the BCCs of freshwater and hypersaline lakes. The relative abundances of different classes of Proteobacteria showed a sharp succession along the salinity gradient. Both DGGE and RLB demonstrated that a few freshwater bacterial groups, e.g., GKS98 and LD2, appeared over wide salinity ranges. Six freshwater isolates affiliated with the GKS98 cluster grew in ecophysiological experiments at maximum salinities of 0.3% to 0.7% (oligosaline), while this group was detected in habitats with salinities up to 6.7% (hypersaline). This observation indicated ecologically significant differences in ecophysiological adaptations among members of this narrow phylogenetic group and suggested ecological significance of microdiversity.


Applied and Environmental Microbiology | 2003

Isolation of Strains Belonging to the Cosmopolitan Polynucleobacter necessarius Cluster from Freshwater Habitats Located in Three Climatic Zones

Martin W. Hahn

ABSTRACT More than 40 bacterial strains belonging to the cosmopolitan Polynucleobacter necessarius cluster (Betaproteobacteria) were isolated from a broad spectrum of freshwater habitats located in three climatic zones. Sequences affiliated with the freshwater P. necessarius cluster are among the most frequently detected in studies on bacterial diversity in freshwater ecosystems. Despite this frequent detection with culture-independent techniques and the cosmopolitan occurrence of members affiliated with this cluster, no isolates have been reported thus far. The isolated strains have been obtained from lakes, ponds, and rivers in central Europe, the Peoples Republic of China, and East Africa by use of the filtration-acclimatization method. The 16S rRNA gene sequences of the isolates are 98.8 to 100% identical to reference sequences obtained by various authors by use of culture-independent methods. The isolates, aerobic heterotrophs, grew on a wide range of standard complex media and formed visible colonies on agar plates. Thus, the previous lack of isolates cannot be explained by a lack of appropriate media. Most of the isolates possess, under a wide range of culture conditions, very small cells (<0.1 μm3), even when grown in medium containing high concentrations of organic substances. Thus, these strains are obligate ultramicrobacteria. The obtained strains have a C-shaped cell morphology which is very similar to that of recently isolated ultramicrobacterial Luna cluster strains (Actinobacteria) and the SAR11 cluster strains (Alphaproteobacteria).


The ISME Journal | 2009

Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria

Adrian K. Sharma; Katrin Sommerfeld; George S. Bullerjahn; Audrey R. Matteson; Steven W. Wilhelm; Jan Jezbera; Ulrike Brandt; W. Ford Doolittle; Martin W. Hahn

Microbial rhodopsins are membrane proteins that utilize a retinal chromophore to harvest sunlight for energetic and photosensory functions. Recently, a group of novel rhodopsin sequences named ‘actinorhodopsins’ (ActRs) was hypothesized to exist among uncultured planktonic Actinobacteria. ActRs were discovered by mining metagenomic data obtained during the Venter Institutes Global Ocean Sampling expedition, from a hypersaline lagoon, two estuaries and a freshwater lake. On the basis of these findings, and many studies that show Actinobacteria are common inhabitants of lakes, we predicted that ActR genes would likely be present in other freshwater habitats and among the genomes of cultivated Actinobacteria. Using degenerate polymerase chain reaction primers, we discovered an ActR gene present in an actinobacterial isolate of the family Microbacteriaceae. Isolate MWH-Uga1 was cultivated prior to this study from a freshwater pond in Uganda and belongs to a group of Actinobacteria previously identified in freshwater ecosystems. ActR genes were also discovered present in numerous mixed cultures containing freshwater Actinobacteria and among environmental DNA samples obtained from three freshwater sources; a small woodland pond and the Laurentian Great Lakes Superior and Erie. An analysis of small subunit ribosomal RNA genes from metagenomic DNA samples harboring ActR genes suggests that organisms belonging to the acI lineage, an uncultured group of Actinobacteria commonly present in fresh waters, may utilize rhodopsins. The co-occurrence of an acI organism with a specific ActR variant in a mixed culture supports our hypothesis.


PLOS ONE | 2012

The Passive Yet Successful Way of Planktonic Life: Genomic and Experimental Analysis of the Ecology of a Free-Living Polynucleobacter Population

Martin W. Hahn; Thomas Scheuerl; Jitka Jezberová; Ulrike Koll; Jan Jezbera; Karel Šimek; Claudia Vannini; Giulio Petroni; Qinglong L. Wu

Background The bacterial taxon Polynucleobacter necessarius subspecies asymbioticus represents a group of planktonic freshwater bacteria with cosmopolitan and ubiquitous distribution in standing freshwater habitats. These bacteria comprise <1% to 70% (on average about 20%) of total bacterioplankton cells in various freshwater habitats. The ubiquity of this taxon was recently explained by intra-taxon ecological diversification, i.e. specialization of lineages to specific environmental conditions; however, details on specific adaptations are not known. Here we investigated by means of genomic and experimental analyses the ecological adaptation of a persistent population dwelling in a small acidic pond. Findings The investigated population (F10 lineage) contributed on average 11% to total bacterioplankton in the pond during the vegetation periods (ice-free period, usually May to November). Only a low degree of genetic diversification of the population could be revealed. These bacteria are characterized by a small genome size (2.1 Mb), a relatively small number of genes involved in transduction of environmental signals, and the lack of motility and quorum sensing. Experiments indicated that these bacteria live as chemoorganotrophs by mainly utilizing low-molecular-weight substrates derived from photooxidation of humic substances. Conclusions Evolutionary genome streamlining resulted in a highly passive lifestyle so far only known among free-living bacteria from pelagic marine taxa dwelling in environmentally stable nutrient-poor off-shore systems. Surprisingly, such a lifestyle is also successful in a highly dynamic and nutrient-richer environment such as the water column of the investigated pond, which was undergoing complete mixis and pronounced stratification in diurnal cycles. Obviously, metabolic and ecological versatility is not a prerequisite for long-lasting establishment of abundant bacterial populations under highly dynamic environmental conditions. Caution should be exercised when generalizing the obtained insights into the ecology and adaptation of the investigated lineage to other Polynucleobacter lineages.


PLOS ONE | 2013

The Diversity of the Limnohabitans Genus, an Important Group of Freshwater Bacterioplankton, by Characterization of 35 Isolated Strains

Vojtěch Kasalický; Jan Jezbera; Martin W. Hahn; Karel Šimek

Bacteria of the genus Limnohabitans, more precisely the R-BT lineage, have a prominent role in freshwater bacterioplankton communities due to their high rates of substrate uptake and growth, growth on algal-derived substrates and high mortality rates from bacterivory. Moreover, due to their generally larger mean cell volume, compared to typical bacterioplankton cells, they contribute over-proportionally to total bacterioplankton biomass. Here we present genetic, morphological and ecophysiological properties of 35 bacterial strains affiliated with the Limnohabitans genus newly isolated from 11 non-acidic European freshwater habitats. The low genetic diversity indicated by the previous studies using the ribosomal SSU gene highly contrasted with the surprisingly rich morphologies and different patterns in substrate utilization of isolated strains. Therefore, the intergenic spacer between 16S and 23S rRNA genes was successfully tested as a fine-scale marker to delineate individual lineages and even genotypes. For further studies, we propose the division of the Limnohabitans genus into five lineages (provisionally named as LimA, LimB, LimC, LimD and LimE) and also additional sublineages within the most diversified lineage LimC. Such a delineation is supported by the morphology of isolated strains which predetermine large differences in their ecology.


PLOS ONE | 2011

Do Patterns of Bacterial Diversity along Salinity Gradients Differ from Those Observed for Macroorganisms

Jianjun Wang; Dongmei Yang; Yong Zhang; Ji Shen; Christopher J. van der Gast; Martin W. Hahn; Qinglong L. Wu

It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns.


Applied and Environmental Microbiology | 2005

Diversity and Phylogenetic Affiliations of Morphologically Conspicuous Large Filamentous Bacteria Occurring in the Pelagic Zones of a Broad Spectrum of Freshwater Habitats

Michael Schauer; Martin W. Hahn

ABSTRACT Filamentous bacteria with a conspicuous morphology were found in the majority of the bacterioplankton samples from a variety of freshwater habitats that were studied. These heterotrophic filaments typically account for <1 to 11% of the total number of bacteria. The biovolume of this morphotype can exceed 40% of the biovolume for all bacteria. Surprisingly, we found hardly any data on these morphologically conspicuous filaments in the literature. Mixed cultures containing these filamentous bacteria were established by cultivation and isolation experiments with samples from different freshwater lakes. Nearly full-length 16S rRNA gene sequences were obtained from several mixed cultures and environmental samples from habitats in Europe, Africa, China, Australia, and New Zealand. Phylogenetic analysis of the sequences showed that three groups form a single monophyletic cluster, the SOL cluster, in the family Saprospiraceae. We developed a set of six nested probes for fluorescence in situ hybridization. Of the six probes, one probe was specific for Haliscomenobacter hydrossis, three probes were specific for the three subclusters (each probe was specific for one subcluster), one probe was specific for the entire SOL cluster, and another probe targeted almost the entire Saprospiraceae family. Specific hybridization of environmental samples and enrichments showed that the members of the three subclusters exhibited the same filamentous morphology. So far, using the subcluster-specific probes, we have not been able to detect any bacteria with a differing morphology. We conclude that the SOL cluster bacteria are an integral part of bacterioplankton in many freshwater habitats. They potentially account for a large fraction of the total bacterial biomass but have been underrepresented in molecular diversity studies so far.


Ecology | 2014

Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids

Sami J. Taipale; Michael T. Brett; Martin W. Hahn; Dominik Martin-Creuzburg; Sean Yeung; Minna Hiltunen; Ursula Strandberg; Paula Kankaala

There is considerable interest in the pathways by which carbon and growth-limiting elemental and biochemical nutrients are supplied to upper trophic levels. Fatty acids and sterols are among the most important molecules transferred across the plant-animal interface of food webs. In lake ecosystems, in addition to phytoplankton, bacteria and terrestrial organic matter are potential trophic resources for zooplankton, especially in those receiving high terrestrial organic matter inputs. We therefore tested carbon, nitrogen, and fatty acid assimilation by the crustacean Daphnia magna when consuming these resources. We fed Daphnia with monospecific diets of high-quality (Cryptomonas marssonii) and intermediate-quality (Chlamydomonas sp. and Scenedesmus gracilis) phytoplankton species, two heterotrophic bacterial strains, and particles from the globally dispersed riparian grass, Phragmites australis, representing terrestrial particulate organic carbon (t-POC). We also fed Daphnia with various mixed diets, and compared Daphnia fatty acid, carbon, and nitrogen assimilation across treatments. Our results suggest that bacteria were nutritionally inadequate diets because they lacked sterols and polyunsaturated omega-3 and omega-6 (omega-3 and omega-6) fatty acids (PUFAs). However, Daphnia were able to effectively use carbon and nitrogen from Actinobacteria, if their basal needs for essential fatty acids and sterols were met by phytoplankton. In contrast to bacteria, t-POC contained sterols and omega-6 and omega-3 fatty acids, but only at 22%, 1.4%, and 0.2% of phytoplankton levels, respectively, which indicated that t-POC food quality was especially restricted with regard to omega-3 PUFAs. Our results also showed higher assimilation of carbon than fatty acids from t-POC and bacteria into Daphnia, based on stable-isotope and fatty acids analysis, respectively. A relatively high (>20%) assimilation of carbon and fatty acids from t-POC was observed only when the proportion of t-POC was >60%, but due to low PUFA to carbon ratio, these conditions yielded poor Daphnia growth. Because of lower assimilation for carbon, nitrogen, and fatty acids from t-POC relative to diets of bacteria mixed with phytoplankton, we conclude that the microbial food web, supported by phytoplankton, and not direct t-POC consumption, may support zooplankton production. Our results suggest that terrestrial particulate organic carbon poorly supports upper trophic levels of the lakes.


Applied and Environmental Microbiology | 2009

Involvement of Cell Surface Structures in Size-Independent Grazing Resistance of Freshwater Actinobacteria

Mitsunori Tarao; Jan Jezbera; Martin W. Hahn

ABSTRACT We compared the influences of grazing by the bacterivorous nanoflagellate Poterioochromonas sp. strain DS on ultramicrobacterial Actinobacteria affiliated with the Luna-2 cluster and ultramicrobacterial Betaproteobacteria of the species Polynucleobacter cosmopolitanus. These bacteria were almost identical in size (<0.1 μm3) and shape. Predation on a Polynucleobacter strain resulted in a reduction of >86% relative to the initial bacterial cell numbers within 20 days, while in comparable predation experiments with nine actinobacterial strains, no significant decrease of cell numbers by predation was observed over the period of ≥39 days. The differences in predation mortality between the actinobacterial strains and the Polynucleobacter strain clearly demonstrated size-independent grazing resistance for the investigated Actinobacteria. Importantly, this size-independent grazing resistance is shared by all nine investigated Luna-2 strains and thus represents a group-specific trait. We investigated if an S-layer, previously observed in an ultrastructure study, was responsible for the grazing resistance of these strains. Experiments aiming for removal of the S-layer or modification of cell surface proteins of one of the grazing-resistant strains by treatment with lithium chloride, EDTA, or formaldehyde resulted in 4.2- to 5.2-fold higher grazing rates in comparison to the levels for untreated cells. These results indicate the protective role of a proteinaceous cell surface structure in the size-independent grazing resistance of the actinobacterial Luna-2 strains, which can be regarded as a group-specific trait.

Collaboration


Dive into the Martin W. Hahn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Jezbera

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Ulrike Koll

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar

Elke Lang

Deutsche Sammlung von Mikroorganismen und Zellkulturen

View shared research outputs
Top Co-Authors

Avatar

Qinglong L. Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jitka Jezberová

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Michael Schauer

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Karel Horňák

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Sami J. Taipale

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge