Martin W. King
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin W. King.
Biomaterials | 2000
Marie-France Guidoin; Yves Marois; Jacques Bejui; Nicolas Poddevin; Martin W. King; Robert Guidoin
The present retrospective analysis of 117 surgically excised anterior cruciate ligament (ACL) prostheses was designed to elucidate the etiology and mechanisms of failure of synthetic ligamentous prostheses. They were harvested from young and active patients (26 +/- 7 yrs) at various orthopaedic centers in France between 1983 and 1993. The average duration of implantation of augmentation and replacement prostheses were 21.5 +/- 12.6 and 33.2 +/- 25.3 months, respectively. The principal causes for their excision were ruptures and synovitis. Each ACL prosthesis was examined macroscopically, histologically, and, after tissue removal, by scanning electron microscopy (SEM) to determine the model, manufacturer, surgical technique used at implantation, the extent of healing, the site of rupture, and the morphology of the damaged fibers. Fourteen types of ACL prostheses were analysed, each fabricated using a different combination of polymers, fibers and textile constructions. Consequently, they generated a variety of healing characteristics and mechanical responses in vivo. SEM observations revealed that abrasion of the textile fibers as a result of yarn-on-yarn and/or yarn-on-bone contact was a common phenomenon to almost all models, and was the primary cause of prosthetic failure. Healing inside the synthetic ACL was poorly organized, incomplete and unpredictable as the extent of collagenous infiltration into the textile structure did not increase with the duration of implantation. In fact, the collagenous infiltration into certain models appeared to be more detrimental than beneficial since it caused deterioration and fraying of the textile structure rather than serving as a reinforcing matrix around the prosthesis. In conclusion, the present study shows that three mechanisms may be involved in the failure of ACL prostheses: (1) inadequate fiber abrasion resistance against osseous surfaces; (2) flexural and rotational fatigue of the fibers, and (3) loss of integrity of the textile structure due to unpredictable tissue infiltration during healing.
Journal of Vascular Surgery | 1995
Xiaoyan Deng; Yves Marois; T.V. How; Yahye Merhi; Martin W. King; Robert Guidoin
PURPOSE The effect of near-wall blood flow velocity and plasma filtration velocity across the arterial wall on luminal surface concentration of low-density lipoproteins (LDL) and the uptake of tritium-cholesterol were investigated. METHODS A numeric analysis of LDL transport in steady flow, over the range of physiologically relevant flow rates, predicted a surface concentration of LDL of 4% to 16% greater than that in the bulk flow. The LDL surface concentration increased linearly with filtration velocity and inversely with wall shear rate. RESULTS These were validated experimentally in canine carotid arteries. When the transmural pressure was increased from 100 to 200 mm Hg, the filtration velocity increased from 5.13 x 10(-6) cm/sec to 8.41 x 10(-6) cm/sec, whereas the normalized uptake rate of tritium-cholesterol increased from 3.58 x 10(-4) cm/hour to 7.36 x 10(-4) cm/hour. CONCLUSION These results indicate that lipids accumulate at the luminal surface in areas where blood flow velocity and wall shear stress are low and where the permeability of the endothelial layer is enhanced. Moreover, the rate of lipid infiltration into the blood vessel walls is affected by the luminal surface concentration. These findings are consistent with chronic hypertension and elevated blood cholesterol concentrations being major risk factors for atherosclerosis.
Journal of Endovascular Therapy | 2000
Robert Guidoin; Yves Marois; Yvan Douville; Martin W. King; M. Castonguay; Amidou Traoré; Maxime Formichi; Lars Erik Staxrud; Lars Norgren; Patrice Bergeron; Jean-Pierre Becquemin; Jose M. Egana; Peter L. Harris
Purpose: To examine the structure and healing characteristics of chronically implanted Stentor endografts that were explanted due to migration, endoleak, thrombosis, or aneurysm expansion. Methods: The devices were harvested following reoperation (n = 5) or autopsy (n = 1) with implantation times ranging from 13 to 53 months. Structural modifications to the metal components were examined using radiography, endoscopy, and magnetic resonance imaging (MRI). Specimens taken from components of the modular stent-grafts were examined histologically and with scanning electron microscopy (SEM) to assess healing behavior. Physical and chemical stability of the nitinol wires and woven polyester graft material was evaluated using SEM and electron spectroscopy for chemical analysis. Results: Although the endografts were retrieved for a variety of reasons, they exhibited similar healing and structural modifications. The woven polyester sleeve showed evidence of yarn shifting and distortion, yarn damage, and filament breakage leading to the formation of openings in the fabric. The luminal surface endografts showed incomplete healing characterized by a poorly organized, nonadherent thrombotic matrix of variable thickness. Radiographic and endoscopic observations indicated that structural failure of the grafts, particularly in the main aortic component, was related to severe compaction and dislocation of the metallic frame due to suture breaks. Corrosion marks were observed on some nitinol wires in all devices. Chemical analysis and ion bombardment of the nitinol wires revealed that the surface concentrations of titanium and nickel were not homogenous. The first layer was composed of carbon or organic elements, followed by a stratum of highly oxidized titanium with a low nickel concentration; the titanium-nickel alloy lay beneath these layers. Conclusions: Although the materials selected for construction of endovascular grafts appears judicious, the assembly of these biomaterials into various interrelated structures within the device requires further improvement.
Biorheology | 1998
Farzan Ghalichi; Xiaoyan Deng; Alain De Champlain; Yvan Douville; Martin W. King; Robert Guidoin
Moderate and severe arterial stenoses can produce highly disturbed flow regions with transitional and or turbulent flow characteristics. Neither laminar flow modeling nor standard two-equation models such as the kappa-epsilon turbulence ones are suitable for this kind of blood flow. In order to analyze the transitional or turbulent flow distal to an arterial stenosis, authors of this study have used the Wilcox low-Re turbulence model. Flow simulations were carried out on stenoses with 50, 75 and 86% reductions in cross-sectional area over a range of physiologically relevant Reynolds numbers. The results obtained with this low-Re turbulence model were compared with experimental measurements and with the results obtained by the standard kappa-epsilon model in terms of velocity profile, vortex length, wall shear stress, wall static pressure, and turbulence intensity. The comparisons show that results predicted by the low-Re model are in good agreement with the experimental measurements. This model accurately predicts the critical Reynolds number at which blood flow becomes transitional or turbulent distal an arterial stenosis. Most interestingly, over the Re range of laminar flow, the vortex length calculated with the low-Re model also closely matches the vortex length predicted by laminar flow modeling. In conclusion, the study strongly suggests that the proposed model is suitable for blood flow studies in certain areas of the arterial tree where both laminar and transitional/turbulent flows coexist.
Biomaterials | 1995
Yves Marois; Nabil Chakfé; Xiaoyan Deng; M. Marois; T.V. How; Martin W. King; Robert Guidoin
The performance of a polyester arterial prosthesis impregnated with gelatin and cross-linked with carbodiimide (Uni-graft) was compared with its porous parent graft (Protegraft) using a canine thoraco-abdominal bypass model. The grafts were investigated in terms of their handling characteristics, imperviousness at implantation, surface thrombogenicity and healing behaviour. Prostheses 30 cm in length were implanted for the following periods: 4, 24 and 48 h, 1, 2 and 4 weeks, 2, 3, 4, 5 and 6 months. Both types of graft had good handling characteristics. The ready-to-use impregnated graft provided satisfactory haemostasis at implantation with no blood permeating through the wall after flow was restored. Both grafts exhibited low surface thrombogenicity, as determined by the uptake of labelled fibrin and platelets, and the healing sequence of the impregnated graft after resorption of the gelatin was equivalent to that of the preclotted control. Biodegradation of the gelatin was complete within 1 month of implantation with the subsequent development of a collagenous internal capsule at both anastomoses. Endothelial cells were observed between 4 and 6 months, but were confined to small islets distributed along the luminal surface. The prostacyclin/thromboxane A2 (PGI2/TXA2) ratio, which gives an indication of the level of endothelial cell activity, was greater than 1.0 after 1 week of implantation for the control graft. For the impregnated graft it reached 1.0 only after 3 months of implantation, but remained above 1.0 for periods of up to 6 months.(ABSTRACT TRUNCATED AT 250 WORDS)
Acta Biomaterialia | 2010
Sangwon Chung; Nilesh P. Ingle; Gerardo A. Montero; Soo Hyun Kim; Martin W. King
Current surgical therapy for diseased vessels less than 6mm in diameter involves bypass grafting with autologous arteries or veins. Although this surgical practice is common, it has significant limitations and complications, such as occlusion, intimal hyperplasia and compliance mismatch. As a result, cardiovascular biomaterials research has been motivated to develop tissue-engineered blood vessel substitutes. In this study, vascular tissue engineering scaffolds were fabricated using two different approaches, namely melt spinning and electrospinning. Small diameter tubes were fabricated from an elastomeric bioresorbable 50:50 poly(l-lactide-co-epsilon-caprolactone) copolymer having dimensions of 5mm in diameter and porosity of over 75%. Scaffolds electrospun from two different solvents, acetone and 1,1,1,3,3,3-hexafluoro-2-propanol were compared in terms of their morphology, mechanical properties and cell viability. Overall, the mechanical properties of the prototype tubes exceeded the transverse tensile values of natural arteries of similar caliber. In addition to spinning the polymer separately into melt-spun and electrospun constructs, the approach in this study has successfully demonstrated that these two techniques can be combined to produce double-layered tubular scaffolds containing both melt-spun macrofibers (<200microm in diameter) and electrospun submicron fibers (>400nm in diameter). Since the vascular wall has a complex multilayered architecture and unique mechanical properties, there remain several significant challenges before a successful tissue-engineered artery is achieved.
Biomaterials | 1996
Yves Marois; Nabil Chakfé; Robert Guidoin; Raymond C. Duhamel; Raynald Roy; M. Marois; Martin W. King; Yvan Douville
The albumin-coated vascular graft (ACG) and its uncoated polyester substrate, the Vascular II (V-II), were evaluated in terms of biocompatibility and biofunctionality using two in vivo animal studies. Biocompatibility and immunoreactivity were assessed by implanting intraperitoneally in the rat small segments of the ACG and the V-II graft and harvesting them with their surrounding tissue 3d, 1, 2 and 4 weeks later. Cytofluorometric determination of total T cells (CD3), the ratio of CD4/CD8 subsets and the percentage of IL-2 receptor-positive T cells in the peripheral blood has revealed that no significant difference in any of the T cell populations was found between the ACG and the V-II graft. The cellular reactivity of the ACG in terms of acid phosphatase activity at the implant side was significantly greater at 3 d but not at longer periods. Biofunctionality was evaluated by implanting both grafts as a thoracoabdominal vascular bypass in dogs for 11 different periods ranging from 4 h to 6 months. The rate of albumin resorption was such that traces were still present at 1 month, but no longer observable at 2 months. Tissue incorporation into the graft wall was earlier for the V-II (2 weeks) than for the ACG (4 weeks), which showed complete encapsulation, tissue incorporation and endothelialization after 2 months in vivo. Only small differences were observed between both grafts in terms of platelet and fibrin uptake on the luminal surface. The prostacyclin/thromboxane A2 ratio increased to a level higher that 1.0 aorta within 1 month for the V-II and 4 months for the ACG. In conclusion, the Bard ACG has demonstrated excellent biocompatibility in terms of blood T cell behaviour and acid phosphatase activity at the implant site. Finally, its healing response is equivalent to that of the uncoated Dacron prosthesis once the albumin coating has been resorbed.
Biomaterials | 1987
Robert Guidoin; Daniel Marceau; Tian Jian Rao; Martin W. King; Yahye Merhi; Paul-Emile Roy; Louisette Martin; Marcellin Duval
Over the years, textile polyester arterial prostheses have acquired an excellent reputation for easy handling and good healing characteristics. Until recently, the main drawback in using them was the need for preclotting. This, however, is no longer true. Nonporous polyester grafts which have been coated with an impervious bioerodible layer during manufacture are now commercially available. The Gelseal Triaxial prosthesis is one of this new generation of grafts. It is manufactured by impregnating a Triaxial prosthesis with a gelatin coating. An in vivo and in vitro evaluation of this new device has found that its water permeability is almost zero. It has good handling and conformability characteristics, and its bursting strength is slightly greater than that of the uncoated prosthesis due, no doubt, to the presence of the gel. The rates of degradation of the gelatin coating have proven to be rapid under both in vitro and in vivo conditions. In fact, only a few traces of the gel were found remaining on the graft after 2 wk in the canine thoracic aorta. In addition, this study has demonstrated that the use of a bioerodible gelatin coating, with its ability to promote cellular regeneration, is a feasible approach with which to achieve earlier and more complete biological healing.
The Annals of Thoracic Surgery | 1984
R. Guidoin; R. W. Snyder; L. Martin; K. Botzko; M. Marois; J. Awad; Martin W. King; D. Domurado; M. Bedros; C. Gosselin
Coating a knitted polyester arterial prosthesis with cross-linked albumin fills the interstices of the graft and relieves the surgeon of the necessity to preclot . This is of particular value in patients whose blood clotting properties are hypercoagulable, or hypocoagulable . In addition, such prostheses require less handling, which can lower the risk of bacteremic colonization and shorten the operative time. The in vivo behavior of the implanted albuminated prosthesis in the thoracic aorta of dogs is similar to that of preclotted grafts, although the sequences of early healing are different. The preclotted graft develops a continuous, thick thrombotic matrix on its luminal surface during the first 4 hours of implantation. Following the initiation of the fibrinolytic mechanism 24 to 48 hours postoperatively, this thrombotic deposit quickly recedes , leaving blood cells and platelets adhering here and there to the prosthetic surface. In comparison, the albuminated coating is not associated with major early thrombotic deposits. The albumin remains visible between the filaments during the first 2 weeks of implantation. Both treated and control grafts contain numerous thrombi on their inner surface after 1 to 2 weeks. After 1, 3, and 6 months, both implants are well encapsulated and present a glistening and continuous luminal surface. This excellent healing, however, can be compromised should the graft adhere too closely to the animals lungs.+2
Asaio Journal | 1994
Elisabeth Urban; Martin W. King; Robert Guidoin; Gaétan Laroche; Yves Marois; Louisette Martin; Alain Cardou; Yvan Douville
In recent years some clinical reports have associated suture failures with polypropylene monofilaments. Therefore there is interest in developing an alternative suture material that is less thrombogenic than polyester and similar in handling characteristics but less prone to mechanical failure than polypropylene. To this end, Peters Laboratoire Pharmaceutique has developed a new monofilament suture material from polyvinylidene fluoride (PVDF), which has been subjected to a special treatment to modify its crystalline form and level of crystallinity. The purpose of this study was to evaluate its mechanical, chemical, and biologic properties and to compare its performance, in a peripheral vascular application, to that of a polypropylene control. A series of in vitro tests were performed to study the morphology, tensile properties, creep, surface chemistry, thermal characteristics, and resistance to iatrogenic trauma. In addition, an in vivo trial was undertaken in which vascular prostheses anastomosed with either PVDF or polypropylene sutures were implanted as athoracoabdominal bypass for 6 months in the dog. Histologic and degradation analyses were performed on the explants. The results from the mechanical tests on 4-0, 5-0, and 6-0 PVDF and polypropylene sutures demonstrated that although both materials have similar breaking strengths, the PVDF has a higher extension at break, has less delayed extension when under tensile creep testing, and suffers less trauma than the polypropylene when compressed by a standard needle holder. While chemical analyses found evidence of surface oxidation on both types of sutures, thermal analysis confirmed that the level of crystallinity of the PVDF polymer is higher than that of the polypropylene control. During the pilot study in animals, PVDF sutures were found to have good handling and frictional characteristics that facilitated the tying of knots. Histologic analysis of the explants found no inflammatory cells in the tissue surrounding either the PVDF or polypropylene sutures, and scanning electron microscopic examination of the cleaned suture surfaces found no evidence of degradation during 6 months in vivo. Though preliminary in nature, these findings indicate that monofilament sutures made from PVDF provide an attractive alternative to those made from polypropylene for use in cardiovascular surgery. In addition to providing acceptable in vivo behavior and being easy to manipulate and more resistant to iatrogenic injury, PVDF materials can be sterilized by β or γ radiation and so can reduce dependence upon ethylene oxide and chlorofluorohydrocarbons.