Martin Wichmann
Hannover Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Wichmann.
Blood | 2012
Felicitas Thol; Sofia Kade; Carola Schlarmann; Patrick Löffeld; Michael A. Morgan; Jürgen Krauter; Marcin W. Wlodarski; Britta Kölking; Martin Wichmann; Kerstin Görlich; Gudrun Göhring; Gesine Bug; Oliver G. Ottmann; Charlotte M. Niemeyer; Wolf-Karsten Hofmann; Brigitte Schlegelberger; Arnold Ganser; Michael Heuser
Mutations in genes of the splicing machinery have been described recently in myelodysplastic syndromes (MDS). In the present study, we examined a cohort of 193 MDS patients for mutations in SRSF2, U2AF1 (synonym U2AF35), ZRSR2, and, as described previously, SF3B1, in the context of other molecular markers, including mutations in ASXL1, RUNX1, NRAS, TP53, IDH1, IDH2, NPM1, and DNMT3A. Mutations in SRSF2, U2AF1, ZRSR2, and SF3B1 were found in 24 (12.4%), 14 (7.3%), 6 (3.1%), and 28 (14.5%) patients, respectively, corresponding to a total of 67 of 193 MDS patients (34.7%). SRSF2 mutations were associated with RUNX1 (P < .001) and IDH1 (P = .013) mutations, whereas U2AF1 mutations were associated with ASXL1 (P = .005) and DNMT3A (P = .004) mutations. In univariate analysis, mutated SRSF2 predicted shorter overall survival and more frequent acute myeloid leukemia progression compared with wild-type SRSF2, whereas mutated U2AF1, ZRSR2, and SF3B1 had no impact on patient outcome. In multivariate analysis, SRSF2 remained an independent poor risk marker for overall survival (hazard ratio = 2.3; 95% confidence interval, 1.28-4.13; P = .017) and acute myeloid leukemia progression (hazard ratio = 2.83; 95% confidence interval, 1.31-6.12; P = .008). These results show a negative prognostic impact of SRSF2 mutations in MDS. SRSF2 mutations may become useful for clinical risk stratification and treatment decisions in the future.
Journal of Clinical Oncology | 2011
Felicitas Thol; Inna Friesen; Haiyang Yun; Eva M. Weissinger; Jürgen Krauter; Katharina Wagner; Anuhar Chaturvedi; Amit Sharma; Martin Wichmann; Gudrun Göhring; Christiane Schumann; Gesine Bug; Oliver G. Ottmann; Wolf-Karsten Hofmann; Brigitte Schlegelberger; Michael Heuser; Arnold Ganser
PURPOSE To study the incidence and prognostic impact of mutations in Additional sex comb-like 1 (ASXL1) in a large cohort of patients with myelodysplastic syndrome (MDS). PATIENTS, MATERIALS, AND METHODS Overall, 193 patients with MDS and 65 healthy volunteers were examined for ASXL1 mutations by direct sequencing and for expression levels of ASXL1. The prognostic impact of ASXL1 mutation and expression levels was evaluated in the context of other clinical and molecular prognostic markers. RESULTS Mutations in ASXL1 occurred with a frequency of 20.7% in MDS (n = 40 of 193) with 70% (n = 28) of mutations being frameshift mutations and 30% (n = 12) being heterozygous point mutations leading to translational changes. ASXL1 mutations were correlated with an intermediate-risk karyotype (P = .002) but not with other clinical parameters. The presence of ASXL1 mutations was associated with a shorter overall survival for frameshift and point mutations combined (hazard ratio [HR], 1.744; 95% CI, 1.08 to 2.82; P = .024) and for frameshift mutations only (HR, 2.06; 95% CI, 1.21 to 3.50; P = .008). ASXL1 frameshift mutations were associated with a reduced time to progression of acute myeloid leukemia (AML; HR 2.35; 95% CI, 1.17 to 4.74; P = .017). In multivariate analysis, when considering karyotype, transfusion dependence, and IDH1 mutation status, ASXL1 frameshift mutations remained an independent prognostic marker in MDS (overall survival: HR, 1.85; 95% CI, 1.03 to 3.34; P = .040; time to AML progression: HR, 2.39; 95% CI, 1.12 to 5.09; P = .024). CONCLUSION These results suggest that ASXL1 mutations are frequent molecular aberrations in MDS that predict an adverse prognostic outcome. Screening of patients for ASXL1 mutations might be useful for clinical risk stratification and treatment decisions in the future.
Haematologica | 2010
Felicitas Thol; Eva M. Weissinger; Jürgen Krauter; Katharina Wagner; Martin Wichmann; Gudrun Göhring; Christiane Schumann; Gesine Bug; Oliver G. Ottmann; Wolf-Karsten Hofmann; Brigitte Schlegelberger; Arnold Ganser; Michael Heuser
Background Myelodysplastic syndromes are a heterogeneous group of hematopoietic stem cell disorders with a high propensity to transform into acute myeloid leukemia. Heterozygous missense mutations in IDH1 at position R132 and in IDH2 at positions R140 and R172 have recently been reported in acute myeloid leukemia. However, little is known about the incidence and prognostic impact of IDH1 and IDH2 mutations in myelodysplastic syndromes. Design and Methods We examined 193 patients with myelodysplastic syndromes and 53 patients with acute myeloid leukemia arising from myelodysplastic syndromes for mutations in IDH1 (R132), IDH2 (R172 and R140), and NPM1 by direct sequencing. Results We found that mutations in IDH1 occurred with a frequency of 3.6% in myelodysplastic syndromes (7 mutations in 193 patients) and 7.5% in acute myeloid leukemia following myelodysplastic syndromes (4 mutations in 53 patients). Three mutations in codon R140 of IDH2 and one mutation in codon R172 were found in patients with acute myeloid leukemia following myelodysplastic syndromes (7.5%). No IDH2 R140 or R172 mutations were identified in patients with myelodysplastic syndromes. The presence of IDH1 mutations was associated with a shorter overall survival (HR 3.20; 95% CI 1.47–6.99) and a higher rate of transformation into acute myeloid leukemia (67% versus 28%, P=0.04). In multivariate analysis when considering karyotype, transfusion dependence and International Prognostic Scoring System score, IDH1 mutations remained an independent prognostic marker in myelodysplastic syndromes (HR 3.57; 95% CI 1.59–8.02; P=0.002). Conclusions These results suggest that IDH1 mutations are recurrent molecular aberrations in patients with myelodysplastic syndromes, and may become useful as a poor risk marker in these patients. These findings await validation in prospective trials.
Blood | 2013
Anuhar Chaturvedi; Michelle Cruz; Nidhi Jyotsana; Amit Sharma; Haiyang Yun; Kerstin Görlich; Martin Wichmann; Adrian Schwarzer; Matthias Preller; Felicitas Thol; Johann Meyer; Reinhard Haemmerle; Eduard A. Struys; Erwin E.W. Jansen; Ute Modlich; Zhixiong Li; Laura M. Sly; Robert Geffers; Robert Lindner; Dietmar J. Manstein; Ulrich Lehmann; Jürgen Krauter; Arnold Ganser; Michael Heuser
Mutations in the metabolic enzymes isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) are frequently found in glioma, acute myeloid leukemia (AML), melanoma, thyroid cancer, and chondrosarcoma patients. Mutant IDH produces 2-hydroxyglutarate (2HG), which induces histone- and DNA-hypermethylation through inhibition of epigenetic regulators. We investigated the role of mutant IDH1 using the mouse transplantation assay. Mutant IDH1 alone did not transform hematopoietic cells during 5 months of observation. However, mutant IDH1 greatly accelerated onset of myeloproliferative disease-like myeloid leukemia in mice in cooperation with HoxA9 with a mean latency of 83 days compared with cells expressing HoxA9 and wild-type IDH1 or a control vector (167 and 210 days, respectively, P = .001). Mutant IDH1 accelerated cell-cycle transition through repression of cyclin-dependent kinase inhibitors Cdkn2a and Cdkn2b, and activated mitogen-activated protein kinase signaling. By computational screening, we identified an inhibitor of mutant IDH1, which inhibited mutant IDH1 cells and lowered 2HG levels in vitro, and efficiently blocked colony formation of AML cells from IDH1-mutated patients but not of normal CD34(+) bone marrow cells. These data demonstrate that mutant IDH1 has oncogenic activity in vivo and suggest that it is a promising therapeutic target in human AML cells.
Blood | 2014
Felicitas Thol; Robin Bollin; Marten Gehlhaar; Carolin Walter; Martin Dugas; Karl Suchanek; Aylin Kirchner; Liu Huang; Anuhar Chaturvedi; Martin Wichmann; Lutz Wiehlmann; Rabia Shahswar; Gudrun Göhring; Brigitte Schlegelberger; Richard F. Schlenk; Konstanze Döhner; Hartmut Döhner; Jürgen Krauter; Arnold Ganser; Michael Heuser
Mutations in the cohesin complex are novel, genetic lesions in acute myeloid leukemia (AML) that are not well characterized. In this study, we analyzed the frequency, clinical, and prognostic implications of mutations in STAG1, STAG2, SMC1A, SMC3, and RAD21, all members of the cohesin complex, in a cohort of 389 uniformly treated AML patients by next generation sequencing. We identified a total of 23 patients (5.9%) with somatic mutations in 1 of the cohesin genes. All gene mutations were mutually exclusive, and STAG1 (1.8%), STAG2 (1.3%), and SMC3 (1.3%) were most frequently mutated. Patients with any cohesin complex mutation had lower BAALC expression levels. We found a strong association between mutations affecting the cohesin complex and NPM1. Mutated allele frequencies were similar between NPM1 and cohesin gene mutations. Overall survival (OS), relapse-free survival (RFS), and complete remission rates (CR) were not influenced by the presence of cohesin mutations (OS: hazard ratio [HR] 0.98; 95% confidence interval [CI], 0.56-1.72 [P = .94]; RFS: HR 0.7; 95% CI, 0.36-1.38 [P = .3]; CR: mutated 83% vs wild-type 76% [P = .45]). The cohesin complex presents a novel pathway affected by recurrent mutations in AML. This study is registered at www.clinicaltrials.gov as #NCT00209833.
Blood | 2018
Felicitas Thol; Razif Gabdoulline; Alessandro Liebich; Piroska Klement; Johannes Schiller; Christian Kandziora; Lothar Hambach; Michael E. Stadler; Christian Koenecke; Madita Flintrop; Mira Pankratz; Martin Wichmann; Blerina Neziri; Konstantin Büttner; Bennet Heida; Sabrina Klesse; Anuhar Chaturvedi; Arnold Kloos; Gudrun Göhring; Brigitte Schlegelberger; Verena I. Gaidzik; Lars Bullinger; Walter Fiedler; Albert Heim; Iyas Hamwi; Matthias Eder; Jürgen Krauter; Richard F. Schlenk; Peter Paschka; Konstanze Döhner
Molecular measurable residual disease (MRD) assessment is not established in approximately 60% of acute myeloid leukemia (AML) patients because of the lack of suitable markers for quantitative real-time polymerase chain reaction. To overcome this limitation, we established an error-corrected next-generation sequencing (NGS) MRD approach that can be applied to any somatic gene mutation. The clinical significance of this approach was evaluated in 116 AML patients undergoing allogeneic hematopoietic cell transplantation (alloHCT) in complete morphologic remission (CR). Targeted resequencing at the time of diagnosis identified a suitable mutation in 93% of the patients, covering 24 different genes. MRD was measured in CR samples from peripheral blood or bone marrow before alloHCT and identified 12 patients with persistence of an ancestral clone (variant allele frequency [VAF] >5%). The remaining 96 patients formed the final cohort of which 45% were MRD+ (median VAF, 0.33%; range, 0.016%-4.91%). In competing risk analysis, cumulative incidence of relapse (CIR) was higher in MRD+ than in MRD- patients (hazard ratio [HR], 5.58; P < .001; 5-year CIR, 66% vs 17%), whereas nonrelapse mortality was not significantly different (HR, 0.60; P = .47). In multivariate analysis, MRD positivity was an independent negative predictor of CIR (HR, 5.68; P < .001), in addition to FLT3-ITD and NPM1 mutation status at the time of diagnosis, and of overall survival (HR, 3.0; P = .004), in addition to conditioning regimen and TP53 and KRAS mutation status. In conclusion, NGS-based MRD is widely applicable to AML patients, is highly predictive of relapse and survival, and may help refine transplantation and posttransplantation management in AML patients.
Annals of Hematology | 2012
Felicitas Thol; Haiyang Yun; Ann-Kathrin Sonntag; Eva M. Weissinger; Jürgen Krauter; Katharina Wagner; Michael A. Morgan; Martin Wichmann; Gudrun Göhring; Gesine Bug; Oliver G. Ottmann; Wolf-Karsten Hofmann; Axel Schambach; Brigitte Schlegelberger; Torsten Haferlach; David T. Bowen; Ken I. Mills; Arnold Ganser; Michael Heuser
Annals of Hematology | 2017
Michael Heuser; Razif Gabdoulline; Patrick Löffeld; Vera Dobbernack; Henriette Kreimeyer; Mira Pankratz; Madita Flintrop; Alessandro Liebich; Sabrina Klesse; Victoria Panagiota; Michael Stadler; Martin Wichmann; Rabia Shahswar; Uwe Platzbecker; Christian Thiede; Thomas Schroeder; Guido Kobbe; Robert Geffers; Brigitte Schlegelberger; Gudrun Göhring; Hans-Heinrich Kreipe; Ulrich Germing; Arnold Ganser; Nicolaus Kröger; Christian Koenecke; Felicitas Thol
Blood | 2015
Michael Heuser; Christian Koenecke; Razif Gabdoulline; Patrick Löffeld; Vera Dobbernack; Victoria Panagiota; Sabrina Klesse; Michael Stadler; Juergen Krauter; Elke Dammann; Martin Wichmann; Rabia Shahswar; Sabin Bhuju; Robert Geffers; Brigitte Schlegelberger; Gudrun Göhring; Moritz Kleine; Wiebke Brauns; Uwe Platzbecker; Christian Thiede; Thomas Schroeder; Guido Kobbe; Arnold Ganser; Nicolaus Kroeger; Felicitas Thol
Blood | 2012
Anuhar Chaturvedi; Michelle Maria Araujo Cruz; Nidhi Jyotsana; Amit Sharma; Haiyang Yun; Kerstin Görlich; Martin Wichmann; Adrian Schwarzer; Matthias Preller; Felicitas Thol; Johann Meyer; Reinhard Haemmerle; Eduard A. Struys; Erwin E.W. Jansen; Ute Modlich; Zhixiong Li; Laura M. Sly; Robert Geffers; Robert Lindner; Dietmar J. Manstein; Urlich Lehmann; Jürgen Krauter; Arnold Ganser; Michael Heuser