Martin Wilkens
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Wilkens.
Foundations of Physics | 1998
Thomas Busch; Berthold-Georg Englert; Kazimierz Rzazewski; Martin Wilkens
Two ultracold atoms moving in a trap interact weakly at a very short distance. This interaction can be modeled by a properly regularized contact potential. We solve the corresponding time-independent Schrödinger equation under the assumption of a parabolic, spherically symmetric trapping potential.
Applied Physics B | 1999
Carsten Henkel; S. Pötting; Martin Wilkens
Abstract.We derive the life time and loss rate for a trapped atom that is coupled to fluctuating fields in the vicinity of a room-temperature metallic and/or dielectric surface. Our results indicate a clear predominance of near-field effects over ordinary blackbody radiation. We develop a theoretical framework for both charged ions and neutral atoms with and without spin. Loss processes that are due to a transition to an untrapped internal state are included.
EPL | 1999
Carsten Henkel; Martin Wilkens
We study the electromagnetic coupling and concomitant heating of a particle in a miniaturized trap close to a solid surface. Two dominant heating mechanisms are identified: proximity fields generated by thermally excited currents in the absorbing solid and time-dependent image potentials due to elastic surface distortions (Rayleigh phonons). Estimates for the lifetime of the trap ground state are given. Ions are particularly sensitive to electric proximity fields: for a silver substrate, we find a lifetime below one second at distances closer than some ten μm to the surface. Neutral atoms may approach the surface more closely: if they have a magnetic moment, a minimum distance of one μm is estimated in tight traps, the heat being transferred via magnetic proximity fields. For spinless atoms, heat is transferred by inelastic scattering of virtual photons off surface phonons. The corresponding lifetime, however, is estimated to be extremely long compared to the timescale of typical experiments.
Journal of Modern Optics | 1997
Martin Wilkens; Christoph Weiss
Abstract We analyse occupation number fluctuations of an ideal Bose gas in a trap which is isolated from the environment with respect to particle exchange (canonical ensemble). We show that in contrast to the predictions of the grandcanonical ensemble, the counting statistics of particles in the trap ground state changes from monotonously decreasing above the condensation temperature to single-peaked below that temperature. For the exactly solvable case of a harmonic oscillator trapping potential in one spatial dimension we extract a Landau–Ginzburg functional which–despite the non-interacting nature of the system–displays the characteristic behaviour of a weakly interacting Bose gas. We also compare our findings with the usual treatment which is based on the grand-canonical ensemble. We show that for an ideal Bose gas neither the grand-canonical and canonical ensemble thermodynamically equivalent, nor the grand-canonical ensemble can be viewed as a small system in diffusive contact with a particle reservoir.
Physical Review A | 2002
Alexander P. Albus; S. A. Gardiner; Fabrizio Illuminati; Martin Wilkens
We consider a dilute homogeneous mixture of bosons and spin-polarized fermions at zero temperature. We first construct the formal scheme for carrying out systematic perturbation theory in terms of single particle Green’s functions. We especially focus on the description of the boson-fermion interaction. To do so we need to introduce the renormalized boson-fermion T matrix, which we determine to second order in the bosonfermion s-wave scattering length. We also discuss how to incorporate the usual boson-boson T matrix in mean field approximation to obtain the total ground-state properties of the system. The next-order term beyond mean field stems from the boson-fermion interaction and is proportional to aBFk F . The total ground-state energy density to this order is the sum of the kinetic energy of the free fermions, the boson-boson mean-field interaction, the usual mean-field contribution to the boson-fermion interaction energy, and the first bosonfermion correction beyond mean field. We also compute the bosonic and the fermionic chemical potentials, the compressibilities, and the modification to the induced fermion-fermion interaction. We discuss the behavior of the total ground-state energy and the importance of the correction beyond mean field for various parameter regimes, in particular considering mixtures of 6 Li and 7 Li and of 3 He and 4 He. Moreover, we determine the modification of the induced fermion-fermion interaction due to the effects beyond mean field. We show that there is no effect on the depletion of the Bose condensate to first order in the boson-fermion scattering length aBF .
Journal of Statistical Physics | 1988
Fritz Haake; Martin Wilkens
We introduce quasiprobabilities based on the so-called squeezed states to represent the density operator of an oscillator. Such representations become especially useful for oscillators designed to display, strong excitation notwithstanding, pronounced quantum features such as squeezing of the quantum fluctuations of certain observables below the limit characteristic of coherent states.
Physical Review A | 2003
Alexander P. Albus; Fabrizio Illuminati; Martin Wilkens
We introduce density-functional theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local-density approximation. We solve numerically the Kohn-Sham system, and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange correlation is discussed by a comparison with current experiments; in particular, we investigate the effect of the repulsive potential-energy contribution due to exchange correlation on the stability of the mixture against collapse.
Journal of Physics B | 1999
Fabrizio Illuminati; Patrick Navez; Martin Wilkens
We derive exact thermodynamic identities relating the average number of condensed atoms and the root-mean-square fluctuations determined in different statistical ensembles for the weakly interacting Bose gas confined in a box. This is achieved by introducing the concept of auxiliary partition functions for model Hamiltonians that do conserve the total number of particles. Exploiting such thermodynamic identities, we provide the first, completely analytical prediction of the microcanonical particle number fluctuations in the weakly interacting Bose gas. Such fluctuations, as a function of the volume V of the box are found to behave normally, in contrast with the anomalous scaling behaviour V4/3 of the fluctuations in the ideal Bose gas.
Physical Review A | 2017
Dennis Rätzel; Martin Wilkens; Ralf Menzel
It is found that the differential cross section of photon-photon scattering is a function of the degree of polarization entanglement of the two-photon state. A reduced, general expression for the differential cross section of photon-photon scattering is derived by applying simple symmetry arguments. An explicit expression is obtained for the example of photon-photon scattering due to virtual electron-positron pairs in Quantum Electrodynamics. It is shown how the effect in this explicit example can be explained as an effect of quantum interference and that it fits with the idea of distance-dependent forces.
New Journal of Physics | 2016
Dennis Rätzel; Martin Wilkens; Ralf Menzel
The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are associated with the emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources.