Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Yagui is active.

Publication


Featured researches published by Martin Yagui.


The Lancet | 2012

Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study

Tracy Dalton; Peter Cegielski; Somsak Akksilp; Luis Asencios; Janice Campos Caoili; Sang-Nae Cho; Vladislav V. Erokhin; Julia Ershova; Ma Tarcela Gler; Boris Y. Kazennyy; Hee Jin Kim; Kai Kliiman; Ekaterina V. Kurbatova; Charlotte Kvasnovsky; Vaira Leimane; Martie van der Walt; Laura E. Via; Grigory V. Volchenkov; Martin Yagui; Hyungseok Kang

BACKGROUND The prevalence of extensively drug-resistant (XDR) tuberculosis is increasing due to the expanded use of second-line drugs in people with multidrug-resistant (MDR) disease. We prospectively assessed resistance to second-line antituberculosis drugs in eight countries. METHODS From Jan 1, 2005, to Dec 31, 2008, we enrolled consecutive adults with locally confirmed pulmonary MDR tuberculosis at the start of second-line treatment in Estonia, Latvia, Peru, Philippines, Russia, South Africa, South Korea, and Thailand. Drug-susceptibility testing for study purposes was done centrally at the Centers for Disease Control and Prevention for 11 first-line and second-line drugs. We compared the results with clinical and epidemiological data to identify risk factors for resistance to second-line drugs and XDR tuberculosis. FINDINGS Among 1278 patients, 43·7% showed resistance to at least one second-line drug, 20·0% to at least one second-line injectable drug, and 12·9% to at least one fluoroquinolone. 6·7% of patients had XDR tuberculosis (range across study sites 0·8-15·2%). Previous treatment with second-line drugs was consistently the strongest risk factor for resistance to these drugs, which increased the risk of XDR tuberculosis by more than four times. Fluoroquinolone resistance and XDR tuberculosis were more frequent in women than in men. Unemployment, alcohol abuse, and smoking were associated with resistance to second-line injectable drugs across countries. Other risk factors differed between drugs and countries. INTERPRETATION Previous treatment with second-line drugs is a strong, consistent risk factor for resistance to these drugs, including XDR tuberculosis. Representative drug-susceptibility results could guide in-country policies for laboratory capacity and diagnostic strategies. FUNDING US Agency for International Development, Centers for Disease Control and Prevention, National Institutes of Health/National Institute of Allergy and Infectious Diseases, and Korean Ministry of Health and Welfare.


Clinical Infectious Diseases | 2014

Extensive drug resistance acquired during treatment of multidrug-resistant tuberculosis.

J. Peter Cegielski; Tracy Dalton; Martin Yagui; Wanpen Wattanaamornkiet; Grigory V. Volchenkov; Laura E. Via; Martie van der Walt; Thelma E. Tupasi; Sarah E. Smith; Ronel Odendaal; Vaira Leimane; Charlotte Kvasnovsky; Tatiana Kuznetsova; Ekaterina V. Kurbatova; Tiina Kummik; Liga Kuksa; Kai Kliiman; Elena V. Kiryanova; Hee Jin Kim; Chang-ki Kim; Boris Y. Kazennyy; Ruwen Jou; Wei-Lun Huang; Julia Ershova; Vladislav V. Erokhin; Lois Diem; Carmen Contreras; Sang-Nae Cho; Larisa N. Chernousova; Michael P. Chen

BACKGROUND Increasing access to drugs for the treatment of multidrug-resistant (MDR) tuberculosis is crucial but could lead to increasing resistance to these same drugs. In 2000, the international Green Light Committee (GLC) initiative began to increase access while attempting to prevent acquired resistance. METHODS To assess the GLCs impact, we followed adults with pulmonary MDR tuberculosis from the start to the end of treatment with monthly sputum cultures, drug susceptibility testing, and genotyping. We compared the frequency and predictors of acquired resistance to second-line drugs (SLDs) in 9 countries that volunteered to participate, 5 countries that met GLC criteria, and 4 countries that did not apply to the GLC. RESULTS In total, 832 subjects were enrolled. Of those without baseline resistance to specific SLDs, 68 (8.9%) acquired extensively drug-resistant (XDR) tuberculosis, 79 (11.2%) acquired fluoroquinolone (FQ) resistance, and 56 (7.8%) acquired resistance to second-line injectable drugs (SLIs). The relative risk (95% confidence interval [CI]) of acquired resistance was lower at GLC-approved sites: 0.27 (.16-.47) for XDR tuberculosis, 0.28 (.17-.45) for FQ, and 0.15 (.06-.39) to 0.60 (.34-1.05) for 3 different SLIs. The risk increased as the number of potentially effective drugs decreased. Controlling for baseline drug resistance and differences between sites, the odds ratios (95% CIs) were 0.21 (.07-.62) for acquired XDR tuberculosis and 0.23 (.09-.59) for acquired FQ resistance. CONCLUSIONS Treatment of MDR tuberculosis involves substantial risk of acquired resistance to SLDs, increasing as baseline drug resistance increases. The risk was significantly lower in programs documented by the GLC to meet specific standards.


The Lancet Respiratory Medicine | 2015

Sputum culture conversion as a prognostic marker for end-of-treatment outcome in patients with multidrug-resistant tuberculosis: a secondary analysis of data from two observational cohort studies

Ekaterina V. Kurbatova; J. Peter Cegielski; Christian Lienhardt; Rattanawadee Akksilp; Jaime Bayona; Mercedes C. Becerra; Janice Campos Caoili; Carmen Contreras; Tracy Dalton; Manfred Danilovits; Olga V. Demikhova; Julia Ershova; Victoria M. Gammino; Irina Gelmanova; Charles M. Heilig; Ruwen Jou; Boris Y. Kazennyy; Salmaan Keshavjee; Hee Jin Kim; Kai Kliiman; Charlotte Kvasnovsky; Vaira Leimane; Carole D. Mitnick; Imelda Quelapio; Vija Riekstina; Sarah E. Smith; Thelma E. Tupasi; Martie van der Walt; Irina Vasilyeva; Laura E. Via

BACKGROUND Sputum culture conversion is often used as an early microbiological endpoint in phase 2 clinical trials of tuberculosis treatment on the basis of its assumed predictive value for end-of-treatment outcome, particularly in patients with drug-susceptible tuberculosis. We aimed to assess the validity of sputum culture conversion on solid media at varying timepoints, and the time to conversion, as prognostic markers for end-of-treatment outcome in patients with multidrug-resistant (MDR) tuberculosis. METHODS We analysed data from two large cohort studies of patients with MDR tuberculosis. We defined sputum culture conversion as two or more consecutive negative cultures from sputum samples obtained at least 30 days apart. To estimate the association of 2 month and 6 month conversion with successful treatment outcome, we calculated odds ratios (ORs) and 95% CIs with random-effects multivariable logistic regression. We calculated predictive values with bivariate random-effects generalised linear mixed modelling. FINDINGS We assessed data for 1712 patients who had treatment success, treatment failure, or who died. Among patients with treatment success, median time to sputum culture conversion was significantly shorter than in those who had poor outcomes (2 months [IQR 1-3] vs 7 months [3 to ≥24]; log-rank p<0·0001). Furthermore, conversion status at 6 months (adjusted OR 14·07 [95% CI 10·05-19·71]) was significantly associated with treatment success compared with failure or death. Sputum culture conversion status at 2 months was significantly associated with treatment success only in patients who were HIV negative (adjusted OR 4·12 [95% CI 2·25-7·54]) or who had unknown HIV infection (3·59 [1·96-6·58]), but not in those who were HIV positive (0·38 [0·12-1·18]). Thus, the overall association of sputum culture conversion with a successful outcome was substantially greater at 6 months than at 2 months. 2 month conversion had low sensitivity (27·3% [95% confidence limit 16·6-41·4]) and high specificity (89·8% [82·3-94·4]) for prediction of treatment success. Conversely, 6 month sputum culture conversion status had high sensitivity (91·8% [85·9-95·4]), but moderate specificity (57·8% [42·5-71·6]). The maximum combined sensitivity and specificity for sputum culture conversion was reached between month 6 and month 10 of treatment. INTERPRETATION Time to sputum culture conversion, conversion status at 6 months, and conversion status at 2 months in patients without known HIV infection can be considered as proxy markers of end-of-treatment outcome in patients with MDR tuberculosis, although the overall association with treatment success is substantially stronger for 6 month than for 2 month conversion status. Investigators should consider these results regarding the validity of sputum culture conversion at various timepoints as an early predictor of treatment efficacy when designing phase 2 studies before investing substantial resources in large, long-term, phase 3 trials of new treatments for MDR tuberculosis. FUNDING US Agency for International Development, US Centers for Disease Control and Prevention, Division of Intramural Research of the US National Institute of Allergy and Infectious Diseases, Korea Centers for Disease Control and Prevention.


Revista Peruana de Medicina Experimental y Salud Pública | 2010

Prioridades regionales y nacionales de investigación en salud, Perú 2010-2014: un proceso con enfoque participativo y descentralista

Patricia Caballero; Martin Yagui; Manuel Espinoza; Teresa Castilla; Arturo Granados; Aníbal Velásquez; César Cabezas

Peru has performed many efforts to identify national health research priorities since 1974 through processes historically planned based on expert opinions, with little impact. It was decided to generate a change in the management of research in order to overcome the weaknesses of the previous processes, applying a methodology with a participative and decentralized approach. In order to establish the regional and national research priorities of the key stakeholders, the Instituto Nacional de Salud (Peru) developed a process of citizenship consult through three phases i) advocacy and workshops in 20 regions; ii) a workshop for the analysis of the Concerted National Health Plan with 200 experts in Lima; iii) the national forum, with 500 representatives in 50 working tables. The research priorities of Peru for the period 2010- 2014 are: research to recognize the problems of health human resources, to recognize the mental health problems, impact evaluations of the social programs for reduction of children malnutrition, impact evaluation of social programs of the actual interventions in maternal mortality and operative research and impact evaluation of interventions in communicable diseases.


Emerging Infectious Diseases | 2008

Scale-up of Multidrug-Resistant Tuberculosis Laboratory Services, Peru

Sonya Shin; Martin Yagui; Luis Ascencios; Gloria Yale; Carmen Suarez; Neyda Quispe; Cesar Bonilla; Joaquin Blaya; Allison Taylor; Carmen Contreras; Peter Cegielski

One-sentence summary for table of contents: Strategic design and implementation of these services is feasible in resource-poor settings.


Clinical Infectious Diseases | 2015

Multidrug-Resistant Tuberculosis Treatment Outcomes in Relation to Treatment and Initial Versus Acquired Second-Line Drug Resistance

J. Peter Cegielski; Ekaterina V. Kurbatova; Martie van der Walt; Jeannette Brand; Julia Ershova; Thelma E. Tupasi; Janice Campos Caoili; Tracy Dalton; Carmen Contreras; Martin Yagui; Jaime Bayona; Charlotte Kvasnovsky; Vaira Leimane; Liga Kuksa; Michael P. Chen; Laura E. Via; Soo Hee Hwang; Melanie Wolfgang; Grigory V. Volchenkov; Tatiana Somova; Sarah E. Smith; Somsak Akksilp; Wanpen Wattanaamornkiet; Hee Jin Kim; Chang-ki Kim; Boris Y. Kazennyy; Tatiana Khorosheva; Kai Kliiman; Piret Viiklepp; Ruwen Jou

BACKGROUND Resistance to second-line drugs develops during treatment of multidrug-resistant (MDR) tuberculosis, but the impact on treatment outcome has not been determined. METHODS Patients with MDR tuberculosis starting second-line drug treatment were enrolled in a prospective cohort study. Sputum cultures were analyzed at a central reference laboratory. We compared subjects with successful and poor treatment outcomes in terms of (1) initial and acquired resistance to fluoroquinolones and second-line injectable drugs (SLIs) and (2) treatment regimens. RESULTS Of 1244 patients with MDR tuberculosis, 973 (78.2%) had known outcomes and 232 (18.6%) were lost to follow-up. Among those with known outcomes, treatment succeeded in 85.8% with plain MDR tuberculosis, 69.7% with initial resistance to either a fluoroquinolone or an SLI, 37.5% with acquired resistance to a fluoroquinolone or SLI, 29.3% with initial and 13.0% with acquired extensively drug-resistant tuberculosis (P < .001 for trend). In contrast, among those with known outcomes, treatment success increased stepwise from 41.6% to 92.3% as the number of drugs proven effective increased from ≤1 to ≥5 (P < .001 for trend), while acquired drug resistance decreased from 12% to 16% range, depending on the drug, down to 0%-2% (P < .001 for trend). In multivariable analysis, the adjusted odds of treatment success decreased 0.62-fold (95% confidence interval, .56-.69) for each increment in drug resistance and increased 2.1-fold (1.40-3.18) for each additional effective drug, controlling for differences between programs and patients. Specific treatment, patient, and program variables were also associated with treatment outcome. CONCLUSIONS Increasing drug resistance was associated in a logical stepwise manner with poor treatment outcomes. Acquired resistance was worse than initial resistance to the same drugs. Increasing numbers of effective drugs, specific drugs, and specific program characteristics were associated with better outcomes and less acquired resistance.


PLOS Medicine | 2015

Association between Regimen Composition and Treatment Response in Patients with Multidrug-Resistant Tuberculosis: A Prospective Cohort Study.

Courtney M. Yuen; Ekaterina V. Kurbatova; Thelma E. Tupasi; Janice Campos Caoili; Martie van der Walt; Charlotte Kvasnovsky; Martin Yagui; Jaime Bayona; Carmen Contreras; Vaira Leimane; Julia Ershova; Laura E. Via; Hee Jin Kim; Somsak Akksilp; Boris Y. Kazennyy; Grigory V. Volchenkov; Ruwen Jou; Kai Kliiman; Olga V. Demikhova; Irina Vasilyeva; Tracy Dalton; J. Peter Cegielski

Background For treating multidrug-resistant tuberculosis (MDR TB), the World Health Organization (WHO) recommends a regimen of at least four second-line drugs that are likely to be effective as well as pyrazinamide. WHO guidelines indicate only marginal benefit for regimens based directly on drug susceptibility testing (DST) results. Recent evidence from isolated cohorts suggests that regimens containing more drugs may be beneficial, and that DST results are predictive of regimen effectiveness. The objective of our study was to gain insight into how regimen design affects treatment response by analyzing the association between time to sputum culture conversion and both the number of potentially effective drugs included in a regimen and the DST results of the drugs in the regimen. Methods and Findings We analyzed data from the Preserving Effective Tuberculosis Treatment Study (PETTS), a prospective observational study of 1,659 adults treated for MDR TB during 2005–2010 in nine countries: Estonia, Latvia, Peru, Philippines, Russian Federation, South Africa, South Korea, Thailand, and Taiwan. For all patients, monthly sputum samples were collected, and DST was performed on baseline isolates at the US Centers for Disease Control and Prevention. We included 1,137 patients in our analysis based on their having known baseline DST results for at least fluoroquinolones and second-line injectable drugs, and not having extensively drug-resistant TB. These patients were followed for a median of 20 mo (interquartile range 16–23 mo) after MDR TB treatment initiation. The primary outcome of interest was initial sputum culture conversion. We used Cox proportional hazards regression, stratifying by country to control for setting-associated confounders, and adjusting for the number of drugs to which patients’ baseline isolates were resistant, baseline resistance pattern, previous treatment history, sputum smear result, and extent of disease on chest radiograph. In multivariable analysis, receiving an average of at least six potentially effective drugs (defined as drugs without a DST result indicating resistance) per day was associated with a 36% greater likelihood of sputum culture conversion than receiving an average of at least five but fewer than six potentially effective drugs per day (adjusted hazard ratio [aHR] 1.36, 95% CI 1.09–1.69). Inclusion of pyrazinamide (aHR 2.00, 95% CI 1.65–2.41) or more drugs to which baseline DST indicated susceptibility (aHR 1.65, 95% CI 1.48–1.84, per drug) in regimens was associated with greater increases in the likelihood of sputum culture conversion than including more drugs to which baseline DST indicated resistance (aHR 1.33, 95% CI 1.18–1.51, per drug). Including in the regimen more drugs for which DST was not performed was beneficial only if a minimum of three effective drugs was present in the regimen (aHR 1.39, 95% CI 1.09–1.76, per drug when three effective drugs present in regimen). The main limitation of this analysis is that it is based on observational data, not a randomized trial, and drug regimens varied across sites. However, PETTS was a uniquely large and rigorous observational study in terms of both the number of patients enrolled and the standardization of laboratory testing. Other limitations include the assumption of equivalent efficacy across drugs in a category, incomplete data on adherence, and the fact that the analysis considers only initial sputum culture conversion, not reversion or long-term relapse. Conclusions MDR TB regimens including more potentially effective drugs than the minimum of five currently recommended by WHO may encourage improved response to treatment in patients with MDR TB. Rapid access to high-quality DST results could facilitate the design of more effective individualized regimens. Randomized controlled trials are necessary to confirm whether individualized regimens with more than five drugs can indeed achieve better cure rates than current recommended regimens.


Tuberculosis | 2012

Identifying multidrug resistant tuberculosis transmission hotspots using routinely collected data

Justin Manjourides; Hsien-Ho Lin; Sonya Shin; Caroline Jeffery; Carmen Contreras; Janeth Santa Cruz; Oswaldo Jave; Martin Yagui; Luis Asencios; Marcello Pagano; Ted Cohen

In most countries with large drug resistant tuberculosis epidemics, only those cases that are at highest risk of having MDRTB receive a drug sensitivity test (DST) at the time of diagnosis. Because of this prioritized testing, identification of MDRTB transmission hotspots in communities where TB cases do not receive DST is challenging, as any observed aggregation of MDRTB may reflect systematic differences in how testing is distributed in communities. We introduce a new disease mapping method, which estimates this missing information through probability-weighted locations, to identify geographic areas of increased risk of MDRTB transmission. We apply this method to routinely collected data from two districts in Lima, Peru over three consecutive years. This method identifies an area in the eastern part of Lima where previously untreated cases have increased risk of MDRTB. This may indicate an area of increased transmission of drug resistant disease, a finding that may otherwise have been missed by routine analysis of programmatic data. The risk of MDR among retreatment cases is also highest in these probable transmission hotspots, though a high level of MDR among retreatment cases is present throughout the study area. Identifying potential multidrug resistant tuberculosis (MDRTB) transmission hotspots may allow for targeted investigation and deployment of resources.


Lancet Infectious Diseases | 2017

Estimating the future burden of multidrug-resistant and extensively drug-resistant tuberculosis in India, the Philippines, Russia, and South Africa: a mathematical modelling study

Aditya Sharma; Andrew N. Hill; Ekaterina V. Kurbatova; Martie van der Walt; Charlotte Kvasnovsky; Thelma E. Tupasi; Janice Campos Caoili; Maria Tarcela Gler; Grigory V. Volchenkov; Boris Y. Kazennyy; Olga V. Demikhova; Jaime Bayona; Carmen Contreras; Martin Yagui; Vaira Leimane; Sang-Nae Cho; Hee Jin Kim; Kai Kliiman; Somsak Akksilp; Ruwen Jou; Julia Ershova; Tracy Dalton; Peter Cegielski

BACKGROUND Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are emerging worldwide. The Green Light Committee initiative supported programmatic management of drug-resistant tuberculosis in 90 countries. We used estimates from the Preserving Effective TB Treatment Study to predict MDR and XDR tuberculosis trends in four countries with a high burden of MDR tuberculosis: India, the Philippines, Russia, and South Africa. METHODS We calibrated a compartmental model to data from drug resistance surveys and WHO tuberculosis reports to forecast estimates of incident MDR and XDR tuberculosis and the percentage of incident MDR and XDR tuberculosis caused by acquired drug resistance, assuming no fitness cost of resistance from 2000 to 2040 in India, the Philippines, Russia, and South Africa. FINDINGS The model forecasted the percentage of MDR tuberculosis among incident cases of tuberculosis to increase, reaching 12·4% (95% prediction interval 9·4-16·2) in India, 8·9% (4·5-11·7) in the Philippines, 32·5% (27·0-35·8) in Russia, and 5·7% (3·0-7·6) in South Africa in 2040. It also predicted the percentage of XDR tuberculosis among incident MDR tuberculosis to increase, reaching 8·9% (95% prediction interval 5·1-12·9) in India, 9·0% (4·0-14·7) in the Philippines, 9·0% (4·8-14·2) in Russia, and 8·5% (2·5-14·7) in South Africa in 2040. Acquired drug resistance would cause less than 30% of incident MDR tuberculosis during 2000-40. Acquired drug resistance caused 80% of incident XDR tuberculosis in 2000, but this estimate would decrease to less than 50% by 2040. INTERPRETATION MDR and XDR tuberculosis were forecast to increase in all four countries despite improvements in acquired drug resistance shown by the Green Light Committee-supported programmatic management of drug-resistant tuberculosis. Additional control efforts beyond improving acquired drug resistance rates are needed to stop the spread of MDR and XDR tuberculosis in countries with a high burden of MDR tuberculosis. FUNDING US Agency for International Development and US Centers for Disease Control and Prevention, Division of Tuberculosis Elimination.


Revista Peruana de Medicina Experimental y Salud Pública | 2010

Avances y retos en la construcción del sistema nacional de investigación en salud en el Perú

Martin Yagui; Manuel Espinoza; Patricia Caballero; Teresa Castilla; Gladys Garro; L. Patricia Yamaguchi; Henry Mormontoy; Percy Mayta-Tristán; Aníbal Velásquez; César Cabezas

The objective of this paper is to present the situational status of the National Health Research System of Peru (NHRS), the lessons learnt during the building process, the opportunities to improve it and the challenges. A description of the functions of the peruvian NHRS is done, in relation to governance, legal framework, research priorities, funding, creation and sustainability of resources and research production and utilization. It describes that in Peru we excert governance in research, we count with regulations, policy and research priorities, these last developed in the framework of a partipatory, inclusive process. The conclusion reached is that the challenges of the peruvian NHRS are to consolidate the governance and to develop the mechanisms to articulate the stakeholders involved in research, to improve the resources allocation for research and innovation, to ellaborate a plan for the development of human resources dedicated to research, to develop institutions and regional competences in order to perform research, and to link research in order to solve problems and make national research policies sustainable.

Collaboration


Dive into the Martin Yagui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonya Shin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gloria Yale

Defense Information Systems Agency

View shared research outputs
Top Co-Authors

Avatar

Carmen Suarez

Defense Information Systems Agency

View shared research outputs
Top Co-Authors

Avatar

J. Peter Cegielski

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Julia Ershova

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Tracy Dalton

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Vaira Leimane

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Martie van der Walt

South African Medical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge