Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Giovanardi is active.

Publication


Featured researches published by Martina Giovanardi.


Bioresource Technology | 2012

Neochloris oleoabundans grown in enriched natural seawater for biodiesel feedstock: evaluation of its growth and biochemical composition.

Cecilia A. Popovich; Cecilia Damiani; Diana Constenla; Ana María Martínez; Hugo Freije; Martina Giovanardi; Simonetta Pancaldi; Patricia I. Leonardi

The freshwater microalga Neochloris oleoabundans was used to study algal lipid production in enriched natural seawater, in order to assess its suitability as biodiesel feedstock. Optimal and nitrogen-stress (N-stress) conditions were analyzed. Under optimal conditions, the strains growth rate was 0.73 div day(-1) and the biomass concentration was 1.5 g L(-1), while it had a maximum lipid yield under N-stress conditions (lipid content: 26% of dry weigh and lipid productivity: 56 mg L(-1) day(-1)). Lipid accumulation was mainly due to a significant increase of triacylglycerol content. Neutral lipids were characterized by a dominance of monounsaturated fatty acids and displayed a fatty acid profile that is suitable for biodiesel. This work offers an interesting alternative for sustainable microalgal oil synthesis for biodiesel production without using freshwater resources. However, further studies are necessary in order to optimize the lipid productivities required for commercial biodiesel production.


Protoplasma | 2013

Morphophysiological analyses of Neochloris oleoabundans (Chlorophyta) grown mixotrophically in a carbon-rich waste product

Martina Giovanardi; Lorenzo Ferroni; Costanza Baldisserotto; Paola Tedeschi; Annalisa Maietti; Laura Pantaleoni; Simonetta Pancaldi

Neochloris oleoabundans is considered one of the most promising oil-rich microalgae because of its ability to store lipids under nitrogen starvation. However, high biomass densities, required for applications on medium to large scale, are not reached in this condition of growth. As previous studies on other microalgae have shown that mixotrophy allows to obtain higher biomass in comparison to autotrophic cultures, we performed morphophysiological analyses in order to test the mixotrophic growth capability of N. oleoabundans. A carbon-rich manure derived from the apple vinegar production (AWP) was added to the medium. Cells were also cultivated under nutrient starvation (tap water), to observe the expected lipids accumulation, and combining AWP to water, to test the potential of this waste in a low-cost culture system. The results highlighted that AWP in the medium allowed to obtain the highest final cell density. Moreover, starch granules were stored inside chloroplast at the beginning of the experiment. The presence of AWP did not induce variations on light harvesting complex II (LHCII)–photosystem II (PSII) assembly, even if an interesting promotion of pigment synthesis in cells was observed. On the other hand, in starved cells, chloroplast degeneration, pigment content decrease, altered LHCII–PSII assembly and accumulation of high amount of lipid globules were observed, irrespective of the presence of AWP. The results suggest that mixotrophy promotes growth in N. oleoabundans and open up the possibility of using waste products from agri-food industries for this purpose. After growth, cells could be transferred under nutrient starvation to induce lipid accumulation.


Journal of Bioenergetics and Biomembranes | 2011

Revised assignment of room-temperature chlorophyll fluorescence emission bands in single living cells of Chlamydomonas reinhardtii

Lorenzo Ferroni; Costanza Baldisserotto; Martina Giovanardi; Laura Pantaleoni; Tomas Morosinotto; Simonetta Pancaldi

Room temperature (RT) microspectrofluorimetry in vivo of single cells has a great potential in photosynthesis studies. In order to get new information on RT chlorophyll fluorescence bands, we analyzed the spectra of Chlamydomonas reinhardtii mutants lacking fundamental proteins of the thylakoid membrane and spectra of photoinhibited WT cells. RT spectra of single living cells were characterized thorough derivative analyses and Gaussian deconvolution. The results obtained suggest that the dynamism in LHCII assembly could be sufficient to explain the variations in amplitudes of F680 (free LHCII), F694 (LHCII-PSII) and F702 (LHCII aggregates); F686 was assigned to the PSII core. Based on the revised assignments and on the variations observed, we discuss the meaning of the two fluorescence emission ratios F680/(F686 + F694) and F702/(F686 + F694), showing that these are sensitive parameters under moderate photoinhibition. In the most photoinhibited samples, the RT spectra tended to degenerate, showing characteristics of mutants that are partly depleted in PSII.


Acta Physiologiae Plantarum | 2014

Growth, morphology and photosynthetic responses of Neochloris oleoabundans during cultivation in a mixotrophic brackish medium and subsequent starvation

Costanza Baldisserotto; Martina Giovanardi; Lorenzo Ferroni; Simonetta Pancaldi

The green microalga Neochloris oleoabundans is able to grow in both low and high salinity media and is largely studied for its capability to accumulate lipids under starvation. Moreover, N. oleoabundans is a mixotrophic alga, and then organic carbon addition can promote its growth. This research aims to study the morpho-physiological aspects, with a particular attention on the photosynthetic response, both during mixotrophic growth and starvation in brackish media, more sustainable than freshwater cultivation. In the first step, the alga was cultivated mixotrophically in a brackish medium added with an apple waste product; in the second one, cells were starved also to verify lipid induction. Results indicate that growth is highly promoted during the first week of mixotrophic cultivation, while photosynthetic pigments and lipids are over-produced during the following three weeks of cultivation. In parallel, in mixotrophic cultures the maximum PSII quantum yield was enhanced during the exponential phase of growth. Interesting changes affected the mixotrophic cultures with respect to the partitioning of absorbed light energy. Starvation of both 7-day-grown mixotrophic and autotrophic cultures caused growth inhibition, pigments and photosynthesis downshifting, and concomitantly promoted evident lipid synthesis.


Phycologia | 2012

Salinity promotes growth of freshwater Neochloris oleoabundans UTEX 1185 (Sphaeropleales, Chlorophyta): morphophysiological aspects

Costanza Baldisserotto; Lorenzo Ferroni; Martina Giovanardi; Luca Boccaletti; Laura Pantaleoni; Simonetta Pancaldi

Baldisserotto C., Ferroni L., Giovanardi M., Boccaletti L., Pantaleoni L. and Pancaldi S. 2012. Salinity promotes growth of freshwater Neochloris oleoabundans UTEX 1185 (Sphaeropleales, Chlorophyta): morphophysiological aspects. Phycologia 51: 700–710. DOI: 10.2216/11-099.1 Neochloris oleoabundans was described as a freshwater unicellular green microalga; however, some literature suggested that it was an edaphic and halotolerant alga. Neochloris oleoabundans was studied so far for its high lipid content, especially under nitrogen starvation, for possible industrial applications. Information on the morphophysiological characteristics of the alga and its photosynthetic apparatus in different culture conditions still remained incomplete. In the present work, its growth was compared using low-salinity and brackish media with increasing nitrogen supply. The morphophysiological aspects, with a special attention on its photosynthetic apparatus, were analysed through light and transmission electron microscopy, photosynthetic pigment quantification, PSII maximum quantum yield measurements and evaluations of the chlorophyll-protein assembly state. In contrast to what has been reported in previous work on the positive effect of nitrate on N. oleobundans growth, we found negative or negligible effects in our samples cultivated in low-salinity or brackish media, respectively. Brackish conditions induced a better growth of the alga, which showed some morphological variations (cell volume enlargement, cell wall thickening, increased stromatic starch and polyphosphate grains). Furthermore, brackish cultured algae were characterized by a strong increase in cellular chlorophylls and carotenoids. Fluorimetric analyses pointed to the absence of disturbance to the photosynthetic apparatus and to a higher photosynthetic efficiency in brackish cultured samples with respect to controls in the low-salinity medium, indicating a somehow better photosynthetic performance. Interestingly, the behaviour of the F680/F685+694 ratio pointed to a possible positive correlation between nitrogen supply and PSII core stability. On the whole, morphological, biochemical and biophysical results confirmed the higher acclimatized growth of N. oleoabundans in brackish media, which seem more suitable for algal growth than low-salinity ones.


Applied Microbiology and Biotechnology | 2015

Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids

Alessandra Sabia; Costanza Baldisserotto; Stefania Biondi; Roberta Marchesini; Paola Tedeschi; Annalisa Maietti; Martina Giovanardi; Lorenzo Ferroni; Simonetta Pancaldi

Neochloris oleoabundans (Chlorophyta) is widely considered one of the most promising microalgae for biotechnological applications. However, the large-scale production of microalgae requires large amounts of water. In this perspective, the possibility of using exhausted growth media for the re-cultivation of N. oleoabundans was investigated in order to simultaneously make the cultivation more economically feasible and environmentally sustainable. Experiments were performed by testing the following media: autotrophic exhausted medium (E+) and mixotrophic exhausted medium after cultivation with glucose (EG+) of N. oleoabundans cells grown in a 20-L photobioreactor (PBR). Both exhausted media were replenished with the same amounts of nitrate and phosphate as the control brackish medium (C). Growth kinetics, nitrate and phosphate consumption, photosynthetic pigments content, photosynthetic efficiency, cell morphology, and lipid production were evaluated. Moreover, the free fatty acid (FFA) composition of exhausted media and the polyamine (PA) concentrations of both algae and media were analyzed in order to test if some molecules, released into the medium, could influence algal growth and metabolism. Results showed that N. oleoabundans can efficiently grow in both exhausted media, if appropriately replenished with the main nutrients (E+ and EG+), especially in E+ and to the same extent as in C medium. Growth promotion of N. oleoabundans was attributed to PAs and alteration of the photosynthetic apparatus to FFAs. Taken together, results show that recycling growth medium is a suitable solution to obtain good N. oleoabundans biomass concentrations, while providing a more sustainable ecological impact on water resources.


Plant Biosystems | 2016

Morpho-physiological aspects of Scenedesmus acutus PVUW12 cultivated with a dairy industry waste and after starvation

Martina Giovanardi; Costanza Baldisserotto; M. Daglia; Lorenzo Ferroni; Alessandra Sabia; Simonetta Pancaldi

Among green microalgae, Scenedesmus sp. is known for its potential in wastewater remediation and lipid production, especially under starvation. Moreover, it is often characterised by a mixotrophic metabolism. In this work, we cultivated S. acutus PVUW12 in the presence of a liquid fraction of scotta (LFS), a cheese whey by-product, as source of nutrients. Subsequently, cultures were starved to evaluate lipid production. Cells were analysed to obtain information about growth, nutrient consumption during LFS cultivation, morphology and photosynthetic efficiency. We found that the alga boosted its growth when cultured in presence of LFS. Production of stromatic starch grains, polyphosphate granules, cell wall enlargement and reduction of the photosynthetic efficiency were also induced. Massive lipid accumulation was observed only during starvation, which also induced a strong slowdown of growth, loss of polyphosphate grains and further decrease in photosynthetic efficiency. This study demonstrates that S. acutus PVUW12 can be involved in a two-step cultivation, first by promoting growth using a by-product from cheese industry and second by transferring the microalgae on starvation to induce lipid accumulation for bioenergetics purposes.


Plant Physiology and Biochemistry | 2018

Enhanced photosynthetic linear electron flow in mixotrophic green microalga Ettlia oleoabundans UTEX 1185

Lorenzo Ferroni; Martina Giovanardi; Mariachiara Poggioli; Costanza Baldisserotto; Simonetta Pancaldi

Basic understanding of the photosynthetic physiology of the oleaginous green microalga Ettlia oleoabundans is still very limited, including the modulation of the photosynthetic membrane upon metabolism conversion from autotrophy to mixotrophy. It was previously reported that, upon glucose supply in the culture medium, E. oleoabundans preserves photosystem II (PSII) from degradation by virtue of a higher packing of thylakoid complexes. In this work, it was investigated whether in the mixotrophic exponential growth phase the PSII activity is merely preserved or even enhanced. Modulated fluorescence parameters were then recorded under short-term treatments with increasing irradiance values of white light. It was found that the mixotrophic microalga down-regulated the chlororespiratory electron recycling from photosystem I (PSI), but enhanced the linear electron flow from PSII to PSI. Ability to keep PSII more open than in autotrophic growth conditions indicated that the respiration of the glucose taken up from the medium fed the carbon fixing reactions with CO2. The overall electron poise was indeed well regulated, with a lesser need for thermal dissipation of excess absorbed energy. It is proposed that the significant, though small, increase in PSII maximum quantum yield in mixotrophic cells just reflects an improved light energy use and an increased photochemical capacity as compared to the autotrophic cells.


Biochimica et Biophysica Acta | 2018

In pea stipules a functional photosynthetic electron flow occurs despite a reduced dynamicity of LHCII association with photosystems

Martina Giovanardi; Laura Pantaleoni; Lorenzo Ferroni; Cristina Pagliano; Pascal Albanese; Costanza Baldisserotto; Simonetta Pancaldi

The flexible association of the light harvesting complex II (LHCII) to photosystem (PS) I and PSII to balance their excitation is a major short-term acclimation process of the thylakoid membrane, together with the thermal dissipation of excess absorbed energy, reflected in non-photochemical quenching of chlorophyll fluorescence (NPQ). In Pisum sativum, the leaf includes two main photosynthetic parts, the basal stipules and the leaflets. Since the stipules are less efficient in carbon fixation than leaflets, the adjustments of the thylakoid system, which safeguard the photosynthetic membrane against photodamage, were analysed. As compared to leaflets, the stipules experienced a decay in PSII photochemical activity. The supramolecular organization of photosystems in stipules showed a more conspicuous accumulation of large PSII-LHCII supercomplexes in the grana, but also a tendency to retain the PSI-LHCI-LHCII state transition complex and the PSI-LHCI-PSII-LHCII megacomplexes probably located at the interface between appressed and stroma-exposed membranes. As a consequence, stipules had a lower capacity to perform state transitions and the overall thylakoid architecture was less structurally flexible and ordered than in leaflets. Yet, stipules proved to be quite efficient in regulating the redox state of the electron transport chain and more capable of inducing NPQ than leaflets. It is proposed that, in spite of a relatively static thylakoid arrangement, LHCII interaction with both photosystems in megacomplexes can contribute to a regulated electron flow.


Algal Research-Biomass Biofuels and Bioproducts | 2016

Photosynthetic aspects and lipid profiles in the mixotrophic alga Neochloris oleoabundans as useful parameters for biodiesel production

Costanza Baldisserotto; Cecilia A. Popovich; Martina Giovanardi; Alessandra Sabia; Lorenzo Ferroni; Diana Constenla; Patricia I. Leonardi; Simonetta Pancaldi

Collaboration


Dive into the Martina Giovanardi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Marsano

University of Eastern Piedmont

View shared research outputs
Researchain Logo
Decentralizing Knowledge