Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Kocan is active.

Publication


Featured researches published by Martina Kocan.


Physiological Reviews | 2013

Relaxin Family Peptides and Their Receptors

Ross A. D. Bathgate; Michelle L. Halls; E. T. van der Westhuizen; Gabrielle E. Callander; Martina Kocan; Roger J. Summers

There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.


Journal of Biological Chemistry | 2014

Cathepsin S Causes Inflammatory Pain via Biased Agonism of PAR2 and TRPV4

Peishen Zhao; TinaMarie Lieu; Nicholas Barlow; Matthew Metcalf; Nicholas A. Veldhuis; Dane D. Jensen; Martina Kocan; Silvia Sostegni; Silke Haerteis; Vera Baraznenok; Ian R. Henderson; Erik Lindström; Raquel Guerrero-Alba; Eduardo Valdez-Morales; Wolfgang Liedtke; Peter McIntyre; Stephen Vanner; Christoph Korbmacher; Nigel W. Bunnett

Background: Proteases trigger inflammation and pain by cleaving protease-activated receptors (PARs) at defined sites. Results: Cathepsin S (Cat-S) cleaved PAR2 at a unique site E56↓T57, leading to Gαs-mediated cAMP accumulation and TRPV4-dependent inflammation and pain. Conclusion: Cat-S is a biased agonist of PAR2- and TRPV4-dependent inflammation and pain. Significance: PARs integrate responses to diverse proteases. Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R36↓S37 and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E56↓T57, which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca2+, activate ERK1/2, recruit β-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain.


Journal of Medicinal Chemistry | 2012

Minimization of Human Relaxin-3 Leading to High-Affinity Analogues with Increased Selectivity for Relaxin-Family Peptide 3 Receptor (RXFP3) over RXFP1

Fazel Shabanpoor; Mohammad Akhter Hossain; Philip J. Ryan; Alessia Belgi; Sharon Layfield; Martina Kocan; Suode Zhang; Chrishan S. Samuel; Andrew L. Gundlach; Ross A. D. Bathgate; Frances Separovic; John D. Wade

Relaxin-3 is a neuropeptide that is implicated in the regulation of stress responses and memory. The elucidation of its precise physiological role(s) has, however, been hampered by cross-activation of the relaxin-2 receptor, RXFP1, in the brain. The current study undertook to develop analogues of human relaxin-3 (H3 relaxin) that can selectively bind and activate its receptor, RXFP3. We developed a high-affinity selective agonist (analogue 2) by removal of the intra-A chain disulfide bond and deletion of 10 residues from the N terminus of the A chain. Further truncation of this analogue from the C terminus of the B chain to Cys(B22) and addition of an Arg(B23) led to a high-affinity, RXFP3-selective, competitive antagonist (analogue 3). Central administration of analogue 2 in rats increased food intake, which was blocked by prior coadministration of analogue 3. These novel RXFP3-selective peptides represent valuable pharmacological tools to study the physiological roles of H3 relaxin/RXFP3 systems in the brain and important leads for the development of novel compounds for the treatment of affective and cognitive disorders.


Journal of Biological Chemistry | 2013

The Bile Acid Receptor TGR5 Does Not Interact with β-arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts

Dane D. Jensen; Cody B. Godfrey; Christian Niklas; Meritxell Canals; Martina Kocan; Daniel P. Poole; Jane E. Murphy; Farzad Alemi; Graeme S. Cottrell; Christoph Korbmacher; Nevin A. Lambert; Nigel W. Bunnett; Carlos U. Corvera

Background: The TGR5 bile acid receptor controls energy balance, inflammation, and digestion, but TGR5 signaling is poorly understood. Results: TGR5 does not interact with β-arrestins, internalize, or desensitize, but signals from plasma membrane rafts. Conclusion: TGR5 transmits sustained signals close to the cell surface. Significance: Understanding TGR5 signaling will facilitate design of TGR5 agonists for metabolic, inflammatory, and digestive disorders. TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.


Frontiers in Endocrinology | 2010

Enhanced BRET technology for the monitoring of agonist-induced and agonist-independent interactions between GPCRs and β-arrestins

Martina Kocan; Matthew B. Dalrymple; Ruth M. Seeber; Brian J. Feldman; Kevin D. G. Pfleger

The bioluminescence resonance energy transfer (BRET) technique has become extremely valuable for the real-time monitoring of protein–protein interactions in live cells. This method is highly amenable to the detection of G protein-coupled receptor (GPCR) interactions with proteins critical for regulating their function, such as β-arrestins. Of particular interest to endocrinologists is the ability to monitor interactions involving endocrine receptors, such as orexin receptor 2 or vasopressin type II receptor. The BRET method utilizes heterologous co-expression of fusion proteins linking one protein of interest (GPCR) to a bioluminescent donor enzyme, a variant of Renilla luciferase, and a second protein of interest (β-arrestin) to an acceptor fluorophore. If in close proximity, energy resulting from oxidation of the coelenterazine substrate by the donor will transfer to the acceptor, which in turn fluoresces. Using novel luciferase constructs, we were able to monitor interactions not detectable using less sensitive BRET combinations in the same configuration. In particular, we were able to show receptor/β-arrestin interactions in an agonist-independent manner using Rluc8-tagged mutant receptors, in contrast to when using Rluc. Therefore, the enhanced BRET methodology has not only enabled live cell compound screening as we have recently published, it now provides a new level of sensitivity for monitoring specific transient, weak or hardly detectable protein–protein complexes, including agonist-independent GPCR/β-arrestin interactions. This has important implications for the use of BRET technologies in endocrine drug discovery programs as well as academic research.


British Journal of Pharmacology | 2012

β2-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail

Nodi Dehvari; Dana S. Hutchinson; Julia Nevzorova; Olof S Dallner; Masaaki Sato; Martina Kocan; Jon Merlin; Bronwyn A. Evans; Roger J. Summers; Tore Bengtsson

BACKGROUND AND PURPOSE β‐Adrenoceptor stimulation induces glucose uptake in several insulin‐sensitive tissues by poorly understood mechanisms.


Journal of Medicinal Chemistry | 2013

Minimum Active Structure of Insulin-like Peptide 5

Alessia Belgi; Ross A. D. Bathgate; Martina Kocan; Nitin A. Patil; Suode Zhang; Geoffrey W. Tregear; John D. Wade; Mohammed Akhter Hossain

Insulin-like peptide 5 (INSL5) is a complex two-chain peptide hormone constrained by three disulfide bonds in a pattern identical to insulin. High expression of INSL5 in the colon suggests roles in activation of colon motility and appetite control. A more recent study indicates it may have significant roles in the regulation of insulin secretion and β-cell homeostasis. This peptide thus has considerable potential for the treatment of eating disorders, obesity, and/or diabetes. However, the synthesis of INSL5 is extremely challenging either by chemical or recombinant means. The A-chain is very poorly soluble and the B-chain is highly aggregating in nature which, together, makes their postsynthesis handling and purification very difficult. Given these difficulties, we have developed a highly active INSL5 analogue that has a much simpler structure with two disulfide bonds and is thus easier to assemble compared to native INSL5. This minimized peptide represents an attractive new mimetic for investigating the functional role of INSL5.


British Journal of Pharmacology | 2014

Signalling profiles of H3 relaxin, H2 relaxin and R3(BΔ23–27)R/I5 acting at the relaxin family peptide receptor 3 (RXFP3)

Martina Kocan; Mohsin Sarwar; Mohammed Akhter Hossain; John D. Wade; Roger J. Summers

Relaxin family peptide receptor 3 (RXFP3) is expressed in brain areas important for processing sensory information and feeding, suggesting that it may be a target for anti‐anxiety and anti‐obesity drugs. We examined the effects of H3 relaxin, the biased agonist H2 relaxin and the antagonist, R3(BΔ23–27)R/I5, on RXFP3 signalling to establish their suitability as tools to assess the physiological roles of RXFP3.


Journal of Medicinal Chemistry | 2016

Engineering of a novel simplified human insulin-Like peptide 5 agonist

Nitin A. Patil; Richard A. Hughes; Martina Kocan; Sheng Y. Ang; Julien Tailhades; Frances Separovic; Roger J. Summers; Johannes Grosse; John D. Wade; Ross A. D. Bathgate; Mohammed Akhter Hossain

Insulin-like peptide 5 (INSL5) has recently been discovered as only the second orexigenic gut hormone after ghrelin. As we have previously reported, INSL5 is extremely difficult to assemble and oxidize into its two-chain three-disulfide structure. The focus of this study was to generate structure-activity relationships (SARs) of INSL5 and use it to develop a potent and simpler INSL5 mimetic with RXFP4 agonist activity. A series of human and mouse INSL5 (hINSL5/mINSL5) analogues were designed and chemically synthesized, resulting in a chimeric INSL5 analogue exhibiting more than 10-fold higher potency (0.35 nM) at human RXFP4 compared with native hINSL5 (4.57 nM). The SAR study also identified a key residue (K(A15)) in the A-chain of mINSL5 that contributes to improved RXFP4 affinity and potency of mINSL5 compared with hINSL5. This knowledge ultimately led us to engineer a minimized hINSL5 mimetic agonist that retains native hINSL5-like RXFP4 affinity and potency at human RXFP4. This minimized analogue was synthesized in 17.5-fold higher yield and in less time compared with hINSL5.


Frontiers in Pharmacology | 2016

The Anti-fibrotic Actions of Relaxin Are Mediated Through a NO-sGC-cGMP-Dependent Pathway in Renal Myofibroblasts In Vitro and Enhanced by the NO Donor, Diethylamine NONOate

Chao Wang; Barbara Kemp-Harper; Martina Kocan; Sheng Y. Ang; Tim D. Hewitson; Chrishan S. Samuel

Introduction: The anti-fibrotic hormone, relaxin, has been inferred to disrupt transforming growth factor (TGF)-β1/Smad2 phosphorylation (pSmad2) signal transduction and promote collagen-degrading gelatinase activity via a nitric oxide (NO)-dependent pathway. Here, we determined the extent to which NO, soluble guanylate cyclase (sGC) and cyclic guanosine monophosphate (cGMP) were directly involved in the anti-fibrotic actions of relaxin using a selective NO scavenger and sGC inhibitor, and comparing and combining relaxin’s effects with that of an NO donor. Methods and Results: Primary renal cortical myofibroblasts isolated from injured rat kidneys were treated with human recombinant relaxin (RLX; 16.8 nM), the NO donor, diethylamine NONOate (DEA/NO; 0.5–5 μM) or the combined effects of RLX (16.8 nM) and DEA/NO (5 μM) over 72 h. The effects of RLX (16.8 nM) and DEA/NO (5 μM) were also evaluated in the presence of the NO scavenger, hydroxocobalamin (HXC; 100 μM) or sGC inhibitor, ODQ (5 μM) over 72 h. Furthermore, the effects of RLX (30 nM), DEA/NO (5 μM) and RLX (30 nM) + DEA/NO (5 μM) on cGMP levels were directly measured, in the presence or absence of ODQ (5 μM). Changes in matrix metalloproteinase (MMP)-2, MMP-9 (cell media), pSmad2 and α-smooth muscle actin (α-SMA; a measure myofibroblast differentiation) (cell layer) were assessed by gelatin zymography and Western blotting, respectively. At the highest concentration tested, both RLX and DEA/NO promoted MMP-2 and MMP-9 levels by 25–33%, while inhibiting pSmad2 and α-SMA expression by up to 50% (all p < 0.05 vs. untreated and vehicle-treated cells). However, 5μM of DEA/NO was required to produce the effects seen with 16.8 nM of RLX over 72 h. The anti-fibrotic effects of RLX or DEA/NO alone were completely abrogated by HXC and ODQ (both p < 0.01 vs. RLX alone or DEA/NO alone), but were significantly enhanced when added in combination (all p < 0.05 vs. RLX alone). Additionally, the direct cGMP-promoting effects of RLX, DEA/NO and RLX+DEA/NO (which all increased cGMP levels by 12-16-fold over basal levels; all p < 0.01 vs. vehicle-treated cells) were significantly inhibited by pre-treatment of ODQ (all p < 0.05 vs. the respective treatments alone). Conclusion: These findings confirmed that RLX mediates its TGF-β1-inhibitory and gelatinase-promoting effects via a NO-sGC-cGMP-dependent pathway, which was additively augmented by co-administration of DEA/NO.

Collaboration


Dive into the Martina Kocan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross A. D. Bathgate

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammed Akhter Hossain

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nitin A. Patil

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

John D. Wade

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin D. G. Pfleger

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge