Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Lahmann is active.

Publication


Featured researches published by Martina Lahmann.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine.

Dodi Safari; Marco Marradi; Fabrizio Chiodo; Huberta A. T. Dekker; Yulong Shan; Roberto Adamo; Stefan Oscarson; Ger T. Rijkers; Martina Lahmann; Johannis P. Kamerling; Soledad Penadés; Harm Snippe

AIMS Coupling of capsular polysaccharides of pathogens to immunogenic protein carriers (conjugate vaccines) improves carbohydrate immune response. Our idea is to explore gold nanoclusters as carriers to prepare fully synthetic carbohydrate vaccines. MATERIALS & METHODS Gold glyconanoparticles bearing a synthetic tetrasaccharide epitope related to the Streptococcus pneumoniae type 14 capsular polysaccharide (Pn14PS), the T-helper ovalbumin 323-339 peptide (OVA(323-339)), and D-glucose were prepared by a one-pot method. Their immunogenicity was tested in mice. Cytokine levels after spleen cell stimulation with OVA(323-339) were analyzed using a luminex-multiplex cytokine assay. The capacity of the evoked antibodies to promote the uptake of S. pneumoniae type 14 by leukocytes was assessed. RESULTS & DISCUSSION Glyconanoparticles containing 45% of tetrasaccharide and 5% OVA(323-339) triggered specific anti-Pn14PS IgG antibodies. Cytokine levels confirmed that glyconanoparticles led to T-helper cell activation. The anti-saccharide antibodies promoted the phagocytosis of type 14 bacteria by human leukocytes, indicating the functionality of the antibodies. CONCLUSION Gold nanoparticles have great potential as carriers for the development of a great diversity of fully synthetic carbohydrate-based vaccines.


Journal of Biological Chemistry | 2005

The Fucose-Binding Lectin from Ralstonia Solanacearum: A New Type of Beta-Propeller Architecture Formed by Oligomerization and Interacting with Fucoside, Fucosyllactose, and Plant Xyloglucan.

Nikola Kostlánová; Edward P. Mitchell; Hugues Lortat-Jacob; Stefan Oscarson; Martina Lahmann; Nechama Gilboa-Garber; Gérard Chambat; Michaela Wimmerová; Anne Imberty

Plant pathogens, like animal ones, use protein-carbohydrate interactions in their strategy for host recognition, attachment, and invasion. The bacterium Ralstonia solanacearum, which is distributed worldwide and causes lethal wilt in many agricultural crops, was shown to produce a potent l-fucose-binding lectin, R. solanacearum lectin, a small protein of 90 amino acids with a tandem repeat in its amino acid sequence. In the present study, surface plasmon resonance experiments conducted on a series of oligosaccharides show a preference for binding to αFuc1-2Gal and αFuc1-6Gal epitopes. Titration microcalorimetry demonstrates the presence of two binding sites per monomer and an unusually high affinity of the lectin for αFuc1-2Gal-containing oligosaccharides (KD = 2.5 × 10-7 m for 2-fucosyllactose). R. solanacearum lectin has been crystallized with a methyl derivative of fucose and with the highest affinity ligand, 2-fucosyllactose. X-ray crystal structures, the one with α-methyl-fucoside being at ultrahigh resolution, reveal that each monomer consists of two small four-stranded anti-parallel β-sheets. Trimerization through a 3-fold or pseudo-3-fold axis generates a six-bladed β-propeller architecture, very similar to that previously described for the fungal lectin of Aleuria aurantia. This is the first report of a β-propeller formed by oligomerization and not by sequential domains. Each monomer presents two fucose binding sites, resulting in six symmetrically arranged sugar binding sites for the β-propeller. Crystals were also obtained for a mutated lectin complexed with a fragment of xyloglucan, a fucosylated polysaccharide from the primary cell wall of plants, which may be the biological target of the lectin.


Molecular Microbiology | 2004

The fimbrial adhesin F17‐G of enterotoxigenic Escherichia coli has an immunoglobulin‐like lectin domain that binds N‐acetylglucosamine

Lieven Buts; Julie Bouckaert; Erwin De Genst; Remy Loris; Stefan Oscarson; Martina Lahmann; Joris Messens; Elke Brosens; Lode Wyns; Henri De Greve

The F17‐G adhesin at the tip of flexible F17 fimbriae of enterotoxigenic Escherichia coli mediates binding to N‐acetyl‐β‐d‐glucosamine‐presenting receptors on the microvilli of the intestinal epithelium of ruminants. We report the 1.7 Å resolution crystal structure of the lectin domain of F17‐G, both free and in complex with N‐acetylglucosamine. The monosaccharide is bound on the side of the ellipsoid‐shaped protein in a conserved site around which all natural variations of F17‐G are clustered. A model is proposed for the interaction between F17‐fimbriated E. coli and microvilli with enhanced affinity compared with the binding constant we determined for F17‐G binding to N‐acetylglucosamine (0.85 mM−1). Unexpectedly, the F17‐G structure reveals that the lectin domains of the F17‐G, PapGII and FimH fimbrial adhesins all share the immunoglobulin‐like fold of the structural components (pilins) of their fimbriae, despite lack of any sequence identity. Fold comparisons with pilin and chaperone structures of the chaperone/usher pathway highlight the central role of the C‐terminal β‐strand G of the immunoglobulin‐like fold and provides new insights into pilus assembly, function and adhesion.


Infection and Immunity | 2008

Identification of the Smallest Structure Capable of Evoking Opsonophagocytic Antibodies against Streptococcus pneumoniae Type 14

Dodi Safari; Huberta A. T. Dekker; John A. F. Joosten; Dirk Michalik; Adriana Carvalho de Souza; Roberto Adamo; Martina Lahmann; Andreas Sundgren; Stefan Oscarson; Johannis P. Kamerling; Harm Snippe

ABSTRACT Synthetic overlapping oligosaccharide fragments of Streptococcus pneumoniae serotype 14 capsular polysaccharide (Pn14PS), {6)-[β-d-Galp-(1→4)-]β-d-GlcpNAc-(1→3)-β-d-Galp-(1→4)-β-d-Glcp-(1→}n, were conjugated to CRM197 protein and injected into mice to determine the smallest immunogenic structure. The resulting antibodies were then tested for Pn14PS specificity and for their capacity to promote the phagocytosis of S. pneumoniae type 14 bacteria. Earlier studies have reported that the oligosaccharide corresponding to one structural repeating unit of Pn14PS, i.e., Gal-Glc-(Gal-)GlcNAc, induces a specific antibody response to Pn14PS. The broader study described here, which evaluated 16 oligosaccharides, showed that the branched trisaccharide element Glc-(Gal-)GlcNAc is essential in inducing Pn14PS-specific antibodies and that the neighboring galactose unit at the nonreducing end contributes clearly to the immunogenicity of the epitope. Only the oligosaccharide conjugates that produce antibodies recognizing Pn14PS were capable of promoting the phagocytosis of S. pneumoniae type 14. In conclusion, the branched tetrasaccharide Gal-Glc-(Gal-)GlcNAc may be a serious candidate for a synthetic oligosaccharide conjugate vaccine against infections caused by S. pneumoniae type 14.


Journal of Organic Chemistry | 2008

Investigations of glycosylation reactions with 2-N-acetyl-2N,3O-oxazolidinone-protected glucosamine donors

Johan Olsson; Lars Eriksson; Martina Lahmann; Stefan Oscarson

NIS/AgOTf-promoted glycosylations with ethyl 2,3-N,O-carbonyl-2-deoxy-1-thio-beta-D-glucopyranoside donors can be performed with either alpha- or beta-selectivity by tuning the reaction conditions. Small amounts of AgOTf (0.1 equiv) and short reaction times give beta-selectivity, whereas 0.4 equiv of AgOTf and prolonged reaction times afford alpha-linked products. NMR-monitored glycosylation and anomerization experiments show initial formation of exclusively the beta-linkage, which anomerizes, through an intramolecular mechanism involving an endocyclic C-O bond cleavage, to the alpha-linkage.


Structure | 2010

A TNF-like Trimeric Lectin Domain from Burkholderia cenocepacia with Specificity for Fucosylated Human Histo-Blood Group Antigens

Ondřej Šulák; Gianluca Cioci; Monia Delia; Martina Lahmann; Annabelle Varrot; Anne Imberty; Michaela Wimmerová

The opportunistic pathogen Burkholderia cenocepacia expresses several soluble lectins, among them BC2L-C. This lectin exhibits two domains: a C-terminal domain with high sequence similarity to the recently described calcium-dependent mannose-binding lectin BC2L-A, and an N-terminal domain of 156 amino acids without similarity to any known protein. The recombinant N-terminal BC2L-C domain is a new lectin with specificity for fucosylated human histo-blood group epitopes H-type 1, Lewis b, and Lewis Y, as determined by glycan array and isothermal titration calorimetry. Methylselenofucoside was used as ligand to solve the crystal structure of the N-terminal BC2L-C domain. Additional molecular modeling studies rationalized the preference for Lewis epitopes. The structure reveals a trimeric jellyroll arrangement with striking similarity to TNF-like proteins, and to BclA, the spore protein from Bacillus anthracis which may play an important role in bioadhesion of anthrax spores in human lungs.


PLOS ONE | 2013

A soluble fucose-specific lectin from Aspergillus fumigatus conidia - Structure, specificity and possible role in fungal pathogenicity

Josef Houser; Jan Komárek; Nikola Kostlánová; Gianluca Cioci; Annabelle Varrot; Sheena C. Kerr; Martina Lahmann; Viviane Balloy; John V. Fahy; Anne Imberty; Michaela Wimmerová

Aspergillus fumigatus is an important allergen and opportunistic pathogen. Similarly to many other pathogens, it is able to produce lectins that may be involved in the host-pathogen interaction. We focused on the lectin AFL, which was prepared in recombinant form and characterized. Its binding properties were studied using hemagglutination and glycan array analysis. We determined the specificity of the lectin towards l-fucose and fucosylated oligosaccharides, including α1-6 linked core-fucose, which is an important marker for cancerogenesis. Other biologically relevant saccharides such as sialic acid, d-mannose or d-galactose were not bound. Blood group epitopes of the ABH and Lewis systems were recognized, LeY being the preferred ligand among others. To provide a correlation between the observed functional characteristics and structural basis, AFL was crystallized in a complex with methyl-α,l-selenofucoside and its structure was solved using the SAD method. Six binding sites, each with different compositions, were identified per monomer and significant differences from the homologous AAL lectin were found. Structure-derived peptides were utilized to prepare anti-AFL polyclonal antibodies, which suggested the presence of AFL on the Aspergillus’ conidia, confirming its expression in vivo. Stimulation of human bronchial cells by AFL led to IL-8 production in a dose-dependent manner. AFL thus probably contributes to the inflammatory response observed upon the exposure of a patient to A. fumigatus. The combination of affinity to human epithelial epitopes, production by conidia and pro-inflammatory activity is remarkable and shows that AFL might be an important virulence factor involved in an early stage of A. fumigatus infection.


Biochemistry | 2012

The tyrosine gate as a potential entropic lever in the receptor-binding site of the bacterial adhesin FimH.

Adinda Wellens; Martina Lahmann; Mohamed Touaibia; Jonathan Vaucher; Stefan Oscarson; René Roy; Han Remaut; Julie Bouckaert

Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infections. During infection, UPEC adhere to mannosylated glycoreceptors on the urothelium via the FimH adhesin located at the tip of type 1 pili. Synthetic FimH antiadhesives such as alkyl and phenyl α-D-mannopyranosides are thus ideal candidates for the chemical interception of this crucial step in pathogenesis. The crystal structures of the FimH lectin domain in its ligand-free form and in complexes with eight medium- and high-affinity mannopyranoside inhibitors are presented. The thermodynamic profiles of the FimH-inhibitor interactions indicate that the binding of FimH to α-D-mannopyranose is enthalpy-driven and has a negative entropic change. Addition of a hydrophobic aglycon influences the binding enthalpy and can induce a favorable entropic change. The alleviation of the entropic cost is at least in part explained by increased dynamics in the tyrosine gate (Tyr48 and Tyr137) of the FimH receptor-binding site upon binding of the ligand. Ligands with a phenyl group directly linked to the anomeric oxygen of α-D-mannose introduce the largest dynamics into the Tyr48 side chain, because conjugation with the anomeric oxygen of α-D-mannose forces the aromatic aglycon into a conformation that comes into close contact (≈2.65 Å) with Tyr48. A propargyl group in this position predetermines the orientation of the aglycon and significantly decreases affinity. FimH has the highest affinity for α-D-mannopyranosides substituted with hydrophobic aglycons that are compatible in shape and electrostatic properties to the tyrosine gate, such as heptyl α-D-mannose.


Glycoconjugate Journal | 2004

Ligands of the asialoglycoprotein receptor for targeted gene delivery, part 1: Synthesis of and binding studies with biotinylated cluster glycosides containing N-acetylgalactosamine.

Ulrika Westerlind; Jacob Westman; Elisabeth Törnquist; C. I. Edvard Smith; Stefan Oscarson; Martina Lahmann; Thomas Norberg

In order to develop the non-viral Bioplex vector system for targeted delivery of genes to hepatocytes, we have evaluated the structure-function relationship for a number of synthetic ligands designed for specific interaction with the hepatic lectin ASGPr. Biotinylated ligand derivatives containing two, three or six beta-linked N-acetylgalactosamine (GalNAc) residues were synthesized, bound to fluorescent-labeled streptavidin and tested for binding and uptake to HepG2 cells using flow cytometry analysis (FACS). Uptake efficiency increased with number of displayed GalNAc units per ligand, in a receptor dependent manner. Thus, a derivative displaying six GalNAc units showed the highest uptake efficacy both in terms of number of internalizing cells and increased amount of material taken up per each cell. However, this higher efficiency was shown to be due not so much to higher number of sugar units, but to higher accessibility of the sugar units for interaction with the receptor (longer spacer). Improving the flexibility and accessibility of a trimeric GalNAc ligand through use of a longer spacer markedly influenced the uptake efficiency, while increasing the number of GalNAc units per ligand above three only provided a minor contribution to the overall affinity. We hereby report the details of the chemical synthesis of the ligands and the structure-function studies in vitro. Published in 2003.


Cell Host & Microbe | 2016

Structural Insights into Polymorphic ABO Glycan Binding by Helicobacter pylori.

Kristof Moonens; Paer Gideonsson; Suresh Subedi; Jeanna Bugaytsova; Ema Romão; Melissa Mendez; Jenny Nordén; Mahsa Fallah; Lena Rakhimova; Anna Shevtsova; Martina Lahmann; Gaetano Castaldo; Kristoffer Brännström; Fanny Coppens; Alvin W. Lo; Tor Ny; Jay V. Solnick; Guy Vandenbussche; Stefan Oscarson; Lennart Hammarström; Anna Arnqvist; Douglas E. Berg; Serge Muyldermans; Thomas Borén; Han Remaut

The Helicobacter pylori adhesin BabA binds mucosal ABO/Le(b) blood group (bg) carbohydrates. BabA facilitates bacterial attachment to gastric surfaces, increasing strain virulence and forming a recognized risk factor for peptic ulcers and gastric cancer. High sequence variation causes BabA functional diversity, but the underlying structural-molecular determinants are unknown. We generated X-ray structures of representative BabA isoforms that reveal a polymorphic, three-pronged Le(b) binding site. Two diversity loops, DL1 and DL2, provide adaptive control to binding affinity, notably ABO versus O bg preference. H. pylori strains can switch bg preference with single DL1 amino acid substitutions, and can coexpress functionally divergent BabA isoforms. The anchor point for receptor binding is the embrace of an ABO fucose residue by a disulfide-clasped loop, which is inactivated by reduction. Treatment with the redox-active pharmaceutic N-acetylcysteine lowers gastric mucosal neutrophil infiltration in H. pylori-infected Le(b)-expressing mice, providing perspectives on possible H. pylori eradication therapies.

Collaboration


Dive into the Martina Lahmann's collaboration.

Top Co-Authors

Avatar

Stefan Oscarson

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Oscarson

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Emiliano Gemma

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Anne Imberty

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianluca Cioci

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annabelle Varrot

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge