Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martina Marzioch.
Nature | 2002
Anne-Claude Gavin; Markus Bösche; Roland Krause; Paola Grandi; Martina Marzioch; Andreas Bauer; Jörg Schultz; Jens Rick; Anne-Marie Michon; Cristina-Maria Cruciat; Marita Remor; Christian Höfert; Malgorzata Schelder; Miro Brajenovic; Heinz Ruffner; Alejandro Merino; Karin Klein; Manuela Hudak; David Dickson; Tatjana Rudi; Volker Gnau; Angela Bauch; Sonja Bastuck; Bettina Huhse; Christina Leutwein; Marie-Anne Heurtier; Richard R. Copley; Angela Edelmann; Erich Querfurth; Vladimir Rybin
Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.
Nature | 2006
Anne-Claude Gavin; Patrick Aloy; Paola Grandi; Roland Krause; Markus Boesche; Martina Marzioch; Christina Rau; Lars Juhl Jensen; Sonja Bastuck; Birgit Dümpelfeld; Angela Edelmann; Marie-Anne Heurtier; Verena Hoffman; Christian Hoefert; Karin Klein; Manuela Hudak; Anne-Marie Michon; Malgorzata Schelder; Markus Schirle; Marita Remor; Tatjana Rudi; Sean D. Hooper; Andreas Bauer; Tewis Bouwmeester; Georg Casari; Gerard Drewes; Gitte Neubauer; Jens Rick; Bernhard Kuster; Peer Bork
Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.
Molecular Cell | 2002
Paola Grandi; Vladimir Rybin; Jochen Baßler; Elisabeth Petfalski; Daniela Strauß; Martina Marzioch; Thorsten Schäfer; Bernhard Kuster; Herbert Tschochner; David Tollervey; Anne-Claude Gavin; Ed Hurt
We report the characterization of early pre-ribosomal particles. Twelve TAP-tagged components each showed nucleolar localization, sedimented at approximately 90S on sucrose gradients, and coprecipitated both the 35S pre-rRNA and the U3 snoRNA. Thirty-five non-ribosomal proteins were coprecipitated, including proteins associated with U3 (Nop56p, Nop58p, Sof1p, Rrp9, Dhr1p, Imp3p, Imp4p, and Mpp10p) and other factors required for 18S rRNA synthesis (Nop14p, Bms1p, and Krr1p). Mutations in components of the 90S pre-ribosomes impaired 40S subunit assembly and export. Strikingly, few components of recently characterized pre-60S ribosomes were identified in the 90S pre-ribosomes. We conclude that the 40S synthesis machinery predominately associates with the 35S pre-rRNA factors, whereas factors required for 60S subunit synthesis largely bind later, showing an unexpected dichotomy in binding.
Archive | 2003
Alejandro Merino; Tewis Bouwmeester; Andreas Bauer; Gerard Drewes; Martina Marzioch; Ulrich Kruse; Giulio Superti-Furga; Dirk Eberhard; Heinz Ruffner; Scott Hobson; Gerd Helftenbein; Cristina Cruciat
Archive | 2002
Andreas Bauer; Anne-Claude Gavin; Gulio Superti-Furga; Bernhard Kuster; Jörg Schultz; Martina Marzioch; Paola Grandi; Roland Krause; Ulrich Kruse; Alejandro Merino; Angela Bauch; Anne-Marie Michon; Christina Leutwein; Jens Rick
Archive | 2002
Andreas Bauer; Anne-Claude Gavin; Martina Marzioch; Joerg Schultz; Miro Brajenovic; Paola Grandi
Archive | 2001
Andreas Dr. Bauer; Anne-Claude Dr. Gavin; Paola Grandi; Roland Krause; Ulrich Kruse; Bernhard Kuster; Martina Marzioch; Jörg Schultz; Giulio Superti-Furga
Archive | 2003
Alejandro Merino; Tewis Bouwmeester; Andreas Bauer; Gerard Drewes; Martina Marzioch; Ulrich Kruse; Giulio Superti-Furga; Dirk Eberhard; Heinz Ruffner; Scott Hobson; Gerd Helftenbein; Cristina Cruciat
Archive | 2002
Andreas Bauer; Anne-Claude Gavin; Martina Marzioch; Jörg Schultz; Miro Brajenovic; Paola Grandi
Archive | 2002
Andreas Bauer; Anne-Claude Gavin; Gulio Superti-Furga; Bernhard Kuster; Jörg Schultz; Martina Marzioch; Paola Grandi; Roland Krause; Ulrich Kruse; Alejandro Merino; Angela Bauch; Anne-Marie Michon; Christina Leutwein; Jens Rick