Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Masarikova is active.

Publication


Featured researches published by Martina Masarikova.


Journal of Antimicrobial Chemotherapy | 2016

High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia

Monika Dolejska; Martina Masarikova; Hana Dobiasova; Ivana Jamborova; Renata Karpíšková; Martin Havlicek; Nicholas Carlile; David Priddel; Alois Cizek; Ivan Literak

Objectives The objective of this study was to investigate the silver gull as an indicator of environmental contamination by salmonellae and carbapenemase-producing Enterobacteriaceae (CPE) in south-east Australia. Methods A total of 504 cloacal samples were collected from gull chicks at three nesting colonies in New South Wales, Australia [White Bay (n = 144), Five Islands (n = 200) and Montague Island (n = 160)] and were examined for salmonellae and CPE. Isolates were tested for carbapenemase genes and susceptibility to 14 antibiotics. Clonality was determined by PFGE and MLST. Genetic context and conjugative transfer of the carbapenemase gene were determined. Results A total of 120 CPE of 10 species, mainly Escherichia coli (n = 85), carrying the gene blaIMP-4, blaIMP-38 or blaIMP-26 were obtained from 80 (40%) gulls from Five Islands. Thirty percent of birds from this colony were colonized by salmonellae. Most isolates contained the gene within a class 1 integron showing a blaIMP-4-qacG-aacA4-catB3 array. The blaIMP gene was carried by conjugative plasmids of variable sizes (80–400 kb) and diverse replicons, including HI2-N (n = 30), HI2 (11), A/C (17), A/C-Y (2), L/M (5), I1 (1) and non-typeable (6). Despite the overall high genetic variability, common clones and plasmid types were shared by different birds and bacterial isolates, respectively. Conclusions Our data demonstrate a large-scale transmission of carbapenemase-producing bacteria into wildlife, likely as a result of the feeding habits of the birds at a local waste depot. The isolates from gulls showed significant similarities with clinical isolates from Australia, suggesting the human origin of the isolates. The sources of CPE for gulls on Five Islands should be explored and proper measures applied to stop the transmission into the environment.


European Journal of Pharmaceutical Sciences | 2015

Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA)

Iveta Zadrazilova; Sarka Pospisilova; Martina Masarikova; Ales Imramovsky; Juana Monreal Férriz; Jarmila Vinšová; Alois Cizek; Josef Jampilek

A series of twenty-one salicylanilide N-alkylcarbamates was assessed for novel antibacterial characteristics against three clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 29213 as the reference and quality control strain. The minimum inhibitory concentration was determined by the broth dilution micro-method with subsequent subcultivation of aliquots to assess minimum bactericidal concentration. The bactericidal kinetics was established by time-kill assay. Ampicillin, ciprofloxacin and vancomycin were used as reference antibacterial drugs. All the tested compounds exhibited highly potent anti-MRSA activity (⩽ 0.008-4 μg/mL) comparable or up to 250× higher than that of vancomycin, the standard in the treatment of serious MRSA infections. 4-Chloro-2-(3,4-dichlorophenylcarbamoyl)phenyl butylcarbamate and 4-chloro-2-(3,4-dichlorophenylcarbamoyl)phenyl ethylcarbamate were the most active compounds. In most cases, compounds provided reliable bacteriostatic activity, except for 4-chloro-2-(4-chlorophenylcarbamoyl)phenyl decylcarbamate exhibiting bactericidal effect at 8h (for clinical isolate of MRSA 63718) and at 24h (for clinical isolates of MRSA SA 630 and MRSA SA 3202) at 4× MIC. Structure-activity relationships are discussed.


Veterinary Microbiology | 2014

Antimicrobial-resistant Enterobacteriaceae from humans and wildlife in Dzanga-Sangha Protected Area, Central African Republic

Martina Janatova; Katerina Albrechtova; Klara Petrzelkova; Monika Dolejska; Ivo Papousek; Martina Masarikova; Alois Cizek; Anguelique Todd; Kathryn Shutt; Bara Kalousova; Ilona Profousova-Psenkova; David Modry; Ivan Literak

Antimicrobial resistance is a worldwide concern of public health. Unfortunately, resistant bacteria are spreading to all ecosystems, including the strictly protected ones. We investigated antimicrobial resistance in gastrointestinal Enterobacteriaceae of wild mammals and people living within Dzangha-Sangha Protected Areas, Central African Republic, with an emphasis on extended-spectrum β-lactamase (ESBL) and plasmid-mediated quinolone resistance (PMQR) genes. We compare resistance genes found in microbiota of humans, gorillas habituated and unhabituated to humans and other wildlife. In gorillas, we additionally investigate the presence of ESBL resistant isolates after treatment by ceftiofur. We found a considerable prevalence of multiresistant Enterobacteriaceae isolates with ESBL and PMQR genes in humans (10% and 31%, respectively). Among wildlife the most significant findings were CTX-M-15-producing Klebsiella pneumoniae in a habituated gorilla and a multiresistant Escherichia coli isolate with gene qepA in an unhabituated gorilla. Other isolates from wildlife were mostly represented by qnrB-harboring Citrobacter spp. The relatedness of resistant E. coli was investigated in a PFGE-based dendrogram; isolates from gorillas showed less than 80% similarity to each other and less than 80% similarity to human isolates. No ESBL-producing isolates were found in animals treated by ceftiofur. Although we did not detect any bacterial clone common to wildlife and humans, we detected an intersection in the spectrum of resistance genes found in humans and gorillas, represented by blaCTX-M-15 and qepA.


Frontiers in Microbiology | 2017

Characteristics of Quinolone Resistance in Escherichia coli Isolates from Humans, Animals, and the Environment in the Czech Republic

Magdaléna Röderová; Dana Halová; Ivo Papousek; Monika Dolejska; Martina Masarikova; Vojtech Hanulik; Vendula Pudova; Petr Broz; Miroslava Htoutou-Sedlakova; Pavel Sauer; Jan Bardon; Alois Cizek; Milan Kolar; Ivan Literak

Escherichia coli is a common commensal bacterial species of humans and animals that may become a troublesome pathogen causing serious diseases. The aim of this study was to characterize the quinolone resistance phenotypes and genotypes in E. coli isolates of different origin from one area of the Czech Republic. E. coli isolates were obtained from hospitalized patients and outpatients, chicken farms, retailed turkeys, rooks wintering in the area, and wastewaters. Susceptibility of the isolates grown on the MacConkey agar with ciprofloxacin (0.05 mg/L) to 23 antimicrobial agents was determined. The presence of plasmid-mediated quinolone resistance (PMQR) and ESBL genes was tested by PCR and sequencing. Specific mutations in gyrA, gyrB, parC, and parE were also examined. Multilocus sequence typing and pulsed-field gel electrophoresis were performed to assess the clonal relationship. In total, 1050 E. coli isolates were obtained, including 303 isolates from humans, 156 from chickens, 105 from turkeys, 114 from the rooks, and 372 from wastewater samples. PMQR genes were detected in 262 (25%) isolates. The highest occurrence was observed in isolates from retailed turkey (49% of the isolates were positive) and inpatients (32%). The qnrS1 gene was the most common PMQR determinant identified in 146 (56%) followed by aac(6′)-Ib-cr in 77 (29%), qnrB19 in 41 (16%), and qnrB1 in 9 (3%) isolates. All isolates with high level of ciprofloxacin resistance (>32 mg/L) carried double or triple mutations in gyrA combined with single or double mutations in parC. The most frequently identified substitutions were Ser(83)Leu; Asp(87)Asn in GyrA, together with Ser(80)Ile, or Glu(84)Val in ParC. Majority of these isolates showed resistance to beta-lactams and multiresistance phenotype was found in 95% isolates. Forty-eight different sequence types among 144 isolates analyzed were found, including five major clones ST131 (26), ST355 (19), ST48 (13), ST95 (10), and ST10 (5). No isolates sharing 100% relatedness and originating from different areas were identified. In conclusion, our study identified PMQR genes in E. coli isolates in all areas studied, including highly virulent multiresistant clones such as ST131 producing CTX-M-15 beta-lactamases.


Antimicrobial Agents and Chemotherapy | 2014

Plasmid-Mediated Quinolone Resistance Genes in Enterobacteriaceae from American Crows: High Prevalence of Bacteria with Variable qnrB Genes

Dana Halová; Ivo Papousek; Ivana Jamborova; Martina Masarikova; Alois Cizek; Nicol Janecko; Veronika Oravcova; Ludek Zurek; Anne B. Clark; Andrea K. Townsend; Julie C. Ellis; Ivan Literak

Though wild birds are not normally exposed to use of antimicrobial agents, they can acquire antibiotic-resistant bacteria through the environment ([1][1]). It was also suggested that rooks may disseminate these bacteria over long distances and pose a risk of contaminating the environment ([2][2]). A


Science of The Total Environment | 2016

Salmonella enterica resistant to antimicrobials in wastewater effluents and black-headed gulls in the Czech Republic, 2012

Martina Masarikova; Ivan Manga; Alois Cizek; Monika Dolejska; Veronika Oravcova; Petra Myšková; Renata Karpíšková; Ivan Literak

We investigated the presence and epidemiological relatedness of Salmonella isolates from a wastewater treatment plant (WWTP) in Brno, Czech Republic and from nestlings of black-headed gulls (Chroicocephalus ridibundus) at the Nove Mlyny waterworks, situated 35 km downstream from the WWTP. During 2012, we collected 37 wastewater samples and 284 gull cloacal swabs. From wastewater samples, we obtained 89 Salmonella isolates belonging to 19 serotypes. At least one resistant strain was contained in 89% of those samples. Ten different serotypes of Salmonella were detected in 38 young gulls, among which 14 (37%) were resistant to antimicrobials. Wastewater isolates were mostly resistant to sulphonamides and tetracycline, gull isolates to tetracycline and ampicillin. We detected the occurrence of blaTEM-1,tet(A), tet(B), tet(G), sul1, sul2, sul3, floR and strA resistance genes. For the first time, we identified a class 1 integron with the dfrA12-orfF-aadA2 gene cassette in S. Infantis. Using pulsed-field gel electrophoresis, we confirmed the presence of identical clusters of S. Agona, S. Enteritidis PT8, S. Infantis and S. Senftenberg in wastewater and black-headed gulls, thus indicating the possibility of resistant Salmonella isolates spreading over long distances in the environment.


Environmental Microbiology Reports | 2014

First record of vancomycin-resistant Enterococcus faecium in Canadian wildlife

Veronika Oravcova; Nicol Janecko; Antonin Ansorge; Martina Masarikova; Ivan Literak

In this study, we focused on spreading of vancomycin-resistant enterococci (VRE) to the environment. We studied that weather crows in Canada may be carriers and potentially reservoirs of VRE with vanA gene. We have found one multi-resistant isolate of Enterococcus faecium sequence type (ST) 448 with vanA gene on Prince Edward Island. This study is the first report of VRE in Canadian wildlife.


PLOS ONE | 2014

Low rates of antimicrobial-resistant enterobacteriaceae in wildlife in Taï National Park, Côte d’Ivoire, surrounded by villages with high prevalence of multiresistant ESBL-producing Escherichia coli in people and domestic animals

Katerina Albrechtova; Ivo Papousek; Hélène M. De Nys; Maude Pauly; Etile Anoh; Arsène Mossoun; Monika Dolejska; Martina Masarikova; Sonja Metzger; Emmanuel Couacy-Hymann; Chantal Akoua-Koffi; Roman M. Wittig; Jiri Klimes; Alois Cizek; Fabian H. Leendertz; Ivan Literak

Antimicrobial resistance genes can be found in all ecosystems, including those where antibiotic selective pressure has never been exerted. We investigated resistance genes in a collection of faecal samples of wildlife (non-human primates, mice), people and domestic animals (dogs, cats) in Côte d’Ivoire; in the chimpanzee research area of Taï National Park (TNP) and adjacent villages. Single bacteria isolates were collected from antibiotic-containing agar plates and subjected to molecular analysis to detect Enterobacteriaceae isolates with plasmid-mediated genes of extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR). While the prevalence of ESBL-producing E. coli in the villages was 27% in people (n = 77) and 32% in dogs (n = 38), no ESBL-producer was found in wildlife of TNP (n = 75). PMQR genes, mainly represented by qnrS1, were also present in human- and dog-originating isolates from the villages (36% and 42% in people and dogs, respectively), but no qnrS has been found in the park. In TNP, different variants of qnrB were detected in Citrobacter freundii isolates originating non-human primates and mice. In conclusion, ESBL and PMQR genes frequently found in humans and domestic animals in the villages were rather exceptional in wildlife living in the protected area. Although people enter the park, the strict biosecurity levels they are obliged to follow probably impede transmission of bacteria between them and wildlife.


Science of The Total Environment | 2017

Vancomycin-resistant enterococci with vanA gene in treated municipal wastewater and their association with human hospital strains

Veronika Oravcova; Matus Mihalcin; Jana Zakova; Lucie Pospisilova; Martina Masarikova; Ivan Literak

Vancomycin-resistant enterococci (VRE) are pathogens of increasing medical importance. In Brno, Czech Republic, we collected 37 samples from the effluent of a wastewater treatment plant (WWTP), 21 surface swabs from hospital settings, and 59 fecal samples from hospitalized patients and staff. Moreover, we collected 284 gull cloacal swabs from the colony situated 35km downstream the WWTP. Samples were cultured selectively. Enterococci were identified using MALDI-TOF MS, phenotypically tested for susceptibility to antibiotics, and by PCR for occurrence of resistance and virulence genes. Pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) were used to examine genotypic diversity. VRE carrying the vanA gene were found in 32 (86%, n=37) wastewater samples, from which we obtained 49 isolates: Enterococcus faecium (44) and Enterococcus gallinarum (2), Enterococcus casseliflavus (2), and Enterococcus raffinosus (1). From 33 (69%) of 48 inpatient stool samples, we obtained 39 vanA-carrying VRE, which belonged to E. faecium (33 isolates), Enterococcus faecalis (4), and Enterococcus raffinosus (2). Nearly one-third of the samples from hospital surfaces contained VRE with the vanA gene. VRE were not detected among gulls. Sixty-seven (84%, n=80) E. faecium isolates carried virulence genes hyl and/or esp. Virulence of E. faecalis was encoded by gelE, asa1, and cylA genes. A majority of the E. faecium isolates belonged to the clinically important sequence types ST17 (WWTP: 10 isolates; hospital: 4 isolates), ST18 (9;8), and ST78 (5;0). The remaining isolates belonged to ST555 (2;0), ST262 (1;6), ST273 (3;0), ST275 (1;0), ST549 (2;0), ST19 (0;1), ST323 (3;0), and ST884 (7;17). Clinically important enterococci carrying the vanA gene were almost continually detectable in the effluent of the WWTP, indicating insufficient removal of VRE during wastewater treatment and permanent shedding of these antibiotic resistant pathogens into the environment from this source. This represents a risk of their transmission to the environment.


Letters in Applied Microbiology | 2018

Occurrence of plasmid-mediated quinolone resistance genes in Escherichia coli and Klebsiella spp. recovered from Corvus brachyrhynchos and Corvus corax roosting in Canada

Nicol Janecko; Dana Halová; Ivana Jamborova; Ivo Papousek; Martina Masarikova; Monika Dolejska; Ivan Literak

The spread of antimicrobial resistance from human activity derived sources to natural habitats implicates wildlife as potential vectors of antimicrobial resistance transfer. Wild birds, including corvid species can disseminate mobile genetic resistance determinants through faeces. This study aimed to determine the occurrence of plasmid‐mediated quinolone resistance (PMQR) genes in Escherichia coli and Klebsiella spp. isolates obtained from winter roosting sites of American crows (Corvus brachyrhynchos) and common ravens (Corvus corax) in Canada. Faecal swabs were collected at five roosting sites across Canada. Selective media isolation and multiplex PCR screening was utilized to identify PMQR genes followed by gene sequencing, pulse‐field gel electrophoresis and multilocus sequence typing to characterize isolates. Despite the low prevalence of E. coli containing PMQR (1·3%, 6/449), qnrS1, qnrB19, qnrC, oqxAB and aac(6′)‐Ib‐cr genes were found in five sequence types (ST), including E. coli ST 131. Conversely, one isolate of Klebsiella pneumoniae contained the plasmid‐mediated resistance gene qnrB19. Five different K. pneumoniae STs were identified, including two novel types. The occurrence of PMQR genes and STs of public health significance in E. coli and Klebsiella pneumoniae recovered from corvids gives further evidence of the anthropogenic derived dissemination of antimicrobial resistance determinants at the human activity‐wildlife‐environment interface.

Collaboration


Dive into the Martina Masarikova's collaboration.

Top Co-Authors

Avatar

Ivan Literak

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar

Alois Cizek

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar

Monika Dolejska

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar

Ivo Papousek

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar

Veronika Oravcova

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar

Dana Halová

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar

Ivana Jamborova

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katerina Albrechtova

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar

Renata Karpíšková

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Researchain Logo
Decentralizing Knowledge