Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Modic is active.

Publication


Featured researches published by Martina Modic.


ChemPhysChem | 2010

Reversible carrier-type transitions in gas-sensing oxides and nanostructures.

Andrew Das Arulsamy; Kristina Elersic; Martina Modic; Uros Cvelbar; Miran Mozetič

Despite many important applications of α-Fe(2)O(3) and Fe doped SnO(2) in semiconductors, catalysis, sensors, clinical diagnosis and treatments, one fundamental issue that is crucial to these applications remains theoretically equivocal--the reversible carrier-type transition between n- and p-type conductivities during gas-sensing operations. Herein, we present an unambiguous and rigorous theoretical analysis in order to explain why and how the oxygen vacancies affect the n-type semiconductors α-Fe(2)O(3) and Fe-doped SnO(2), in which they are both electronically and chemically transformed into a p-type semiconductor. Furthermore, this reversible transition also occurs on the oxide surfaces during gas-sensing operation due to physisorbed gas molecules (without any chemical reaction). We make use of the ionization energy theory and its renormalized ionic displacement polarizability functional to reclassify, generalize and explain the concept of carrier-type transition in solids, and during gas-sensing operation. The origin of such a transition is associated with the change in ionic polarizability and the valence states of cations in the presence of oxygen vacancies and physisorped gas molecules.


Colloids and Surfaces B: Biointerfaces | 2015

Blood coagulation and platelet adhesion on polyaniline films

Petr Humpolíček; Zdenka Kuceková; Věra Kašpárková; Jana Pelková; Martina Modic; Ita Junkar; Miroslava Trchová; Patrycja Bober; Jaroslav Stejskal; Marián Lehocký

Polyaniline is a promising conducting polymer with still increasing application potential in biomedicine. Its surface modification can be an efficient way how to introduce desired functional groups and to control its properties while keeping the bulk characteristics of the material unchanged. The purpose of the study was to synthetize thin films of pristine conducting polyaniline hydrochloride, non-conducting polyaniline base and polyaniline modified with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) and investigate chosen parameters of their hemocompatibility. The modification was performed either by introduction of PAMPSA during the synthesis or by reprotonation of polyaniline base. The polyaniline hydrochloride and polyaniline base had no impact on blood coagulation and platelet adhesion. By contrast, the polyaniline reprotonated with PAMPSA completely hindered coagulation thanks to its interaction with coagulation factors Xa, Va and IIa. The significantly lower platelets adhesion was also found on this surface. Moreover, this film maintains its conductivity at pH of 6, which is an improvement in comparison with standard polyaniline hydrochloride losing most of its conductivity at pH of 4. Polyaniline film with PAMPSA introduced during synthesis had an impact on platelet adhesion but not on coagulation. The combined conductivity, anticoagulation activity, low platelet adhesion and improved conductivity at pH closer to physiological, open up new possibilities for application of polyaniline reprotonated by PAMPSA in blood-contacting devices, such as catheters or blood vessel grafts.


Meat Science | 2017

The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin

A. Bauer; Y. Ni; S. Bauer; Peter Paulsen; Martina Modic; James L. Walsh; Frans J. M. Smulders

Effects on vacuum packaged and non-packaged beef longissimus samples exposed to atmospheric cold plasma (ACP) generated at different powers were studied over a 10day period of vacuum-, and a subsequent 3day period of aerobic storage. Exposure of non-covered beef samples under high power ACP conditions resulted in increased a*, b*, Chroma and Hue values, but ACP treatment of packaged loins did not impact colour (L*, a*, b*, Chroma, Hue), lipid peroxidation, sarcoplasmic protein denaturation, nitrate/nitrite uptake, or myoglobin isoform distribution. Colour values measured after 3days of aerobic storage following unpackaging (i.e. 20days post-mortem) were similar and all compliant with consumer acceptability standards. Exposure to ACP of the polyamide-polyethylene packaging film inoculated with Staphylococcus aureus, Listeria monocytogenes and two Escherichia coli strains resulted in >2 log reduction without affecting the integrity of the packaging matrix. Results indicate that ACP can reduce microbial numbers on surfaces of beef packages without affecting characteristics of the packaged beef.


Fibers and Polymers | 2016

Influence of oxygen plasma pre-treatment on the water repellency of cotton fibers coated with perfluoroalkyl-functionalized polysilsesquioxane

Jelena Vasiljević; Marija Gorjanc; Ivan Jerman; Brigita Tomšič; Martina Modic; Miran Mozetič; Boris Orel; Barbara Simončič

Oxygen plasma pre-treatment was applied to cotton fabric with the aim of improving the water repellency performance of an inorganic-organic hybrid sol-gel perfluoroalkyl-functionalized polysilsesquioxane coating. Cotton fabric was pre-treated with low-pressure oxygen plasma for different treatment times and operating powers. Afterward, 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF) was applied to the cotton fabric samples using the pad-dry-cure method. The surfaces of the untreated and modified cotton fibers were characterised using Fourier transform infrared spectroscopy, Xray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water repellency of the SiF-coated fabric samples was evaluated using static and sliding contact angle measurements with water. The results show that the plasma treatment with the shortest treatment time (10 s) and the lowest operating current (0.3 A) increased the atomic oxygen/carbon ratio of the cotton fiber surface from 0.6 to 0.8 and induced the formation of a nano-sized grainy surface. Increasing the plasma treatment time and/or operating current did not intensify the surface changes of the cotton fibers. Such saturation effects were explained by the large influence of reactive oxygen atoms during the plasma treatment. The measured static water contact angles on the surface of the untreated and plasma pre-treated and SiF-coated cotton fabrics showed that the oxygen plasma pre-treatment enabled the increase of the water contact angle from 135° to ≈150°, regardless of the applied plasma treatment time and discharge power. This improvement in the hydrophobicity of the SiF coating was followed by a decrease in the sliding angle of water droplets by more than 10° compared to the plasma untreated and SiF-coated sample characterized by a water sliding angle of 45°. Additionally, measurements of the water sliding angle revealed that the increase of the static contact angle from 149° to 150° corresponded to a drop of the water sliding angle from 33 to 24°, which suggests that the plasma pre-treatment of 20 s at an operating current of 0.3 A produced the best water-repellent performance of the SiF-coated cotton fabric.


Journal of Physics D | 2016

A solar powered handheld plasma source for microbial decontamination applications

Y. Ni; M J Lynch; Martina Modic; Richard D. Whalley; James L. Walsh

A fully portable atmospheric pressure air plasma system is reported to be suitable for the microbial decontamination of both surfaces and liquids. The device operates in quiescent air, and includes an integrated battery which is charged from a solar cell and weighs less than 750 g, making it highly amenable for a wide variety of applications beyond the laboratory. Using particle imaging velocimetry to visualise air flows around the device, the geometric configuration of the plasma generating electrodes was enhanced to induce a gas flow on the order of 0.5 m s−1 directed towards a sample placed downstream, thus improving the transport of plasma generated reactive species to the sample. The microbial decontamination efficiency of the system was assessed using potable water samples inoculated with common waterborne organisms Escherichia coli and Pseudomonas fluorescens. The reduction in the number of microorganisms was found to be in the range of 2–8 log and was strongly dependent on the plasma generation conditions.


Physical Chemistry Chemical Physics | 2011

Polarization induced water molecule dissociation below the first-order electronic-phase transition temperature

Andrew Das Arulsamy; Zlatko Kregar; Kristina Elersic; Martina Modic; Uma Shankar Subramani

Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O-H covalent bonds within a single water molecule adsorbed on the MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on the MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the first-order electronic-phase transition temperature.


Japanese Journal of Applied Physics | 2011

Hemocompatible Poly(ethylene terephthalate) Polymer Modified via Reactive Plasma Treatment

Uros Cvelbar; Ita Junkar; Martina Modic

In this paper we present the fabrication of micro- and nanostructure poly(ethylene terephthalate) (PET) polymer surfaces used for as synthetic vascular grafts and their hemocompatible response to plasma-treated surfaces. The surface modification of PET polymer was performed using radio frequency (RF) weakly ionized and highly dissociated oxygen or nitrogen plasma. The surface of the PET polymer was modified to enable the improved proliferation of endothelial cells. In addition to biological experiments performed in vitro by assessing the number of attached cells by tetrazolium compound (MTS)-based cell proliferation assay, we also analyzed the chemical modification of plasma-treated surfaces by X-ray photoelectron spectroscopy (XPS), while the changes in morphology and surface roughness were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Our results indicate that surface treatment with both oxygen and nitrogen plasma improved the proliferation of endothelial cells, which increased with treatment time by 15 to 30%. This phenomenon was explained by the creation of new functional groups and the modification of surface morphology, which promotes the adhesion of endothelial cells.


International Journal of Antimicrobial Agents | 2017

Cold atmospheric pressure plasma elimination of clinically important single- and mixed-species biofilms

Martina Modic; Neil P. McLeod; J. Mark Sutton; James L. Walsh

Mixed-species biofilms reflect the natural environment of many pathogens in clinical settings and are highly resistant to disinfection methods. An indirect cold atmospheric-pressure air-plasma system was evaluated under two different discharge conditions for its ability to kill representative Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) pathogens. Plasma treatment of individual 24-h-old biofilms and mixed-species biofilms that contained additional species (Enterococcus faecalis and Klebsiella pneumoniae) was considered. Under plasma conditions that favoured the production of reactive nitrogen species (RNS), individual P. aeruginosa biofilms containing ca. 5.0 × 106 CFU were killed extremely rapidly, with no bacterial survival detected at 15 s of exposure. Staphylococcus aureus survived longer under these conditions, with no detectable growth after 60 s of exposure. In mixed-species biofilms, P. aeruginosa survived longer but all species were killed with no detectable growth at 60 s. Under plasma conditions that favoured the production of reactive oxygen species (ROS), P. aeruginosa showed increased survival, with the lower limit of detection reached by 120 s, and S. aureus was killed in a similar time frame. In the mixed-species model, bacterial kill was biphasic but all pathogens showed viable cells after 240 s of exposure, with P. aeruginosa showing significant survival (ca. 3.6 ± 0.6 × 106 CFU). Overall, this study shows the potential of indirect air plasma treatment to achieve significant bacterial kill, but highlights aspects that might affect performance against key pathogens, especially in real-life settings within mixed populations.


Materials | 2014

Formation of Nanocones on Highly Oriented Pyrolytic Graphite by Oxygen Plasma

Alenka Vesel; Kristina Elersic; Martina Modic; Ita Junkar; Miran Mozetič

Improvement in hemocompatibility of highly oriented pyrolytic graphite (HOPG) by formation of nanostructured surface by oxygen plasma treatment is reported. We have showed that by appropriate fine tuning of plasma and discharge parameters we are able to create nanostructured surface which is densely covered with nanocones. The size of the nanocones strongly depended on treatment time. The optimal results in terms of material hemocompatibility were obtained after treatment with oxygen plasma for 15 s, when both the nanotopography and wettability were the most favorable, since marked reduction in adhesion and activation of platelets was observed on this surface. At prolonged treatment times, the rich surface topography was lost and thus also its antithrombogenic properties. Chemical composition of the surface was always more or less the same, regardless of its morphology and height of the nanocones. Namely, on all plasma treated samples, only a few atomic percent of oxygen was found, meaning that plasma caused mostly etching, leading to changes in the surface morphology. This indicates that the main preventing mechanism against platelets adhesion was the right surface morphology.


Central European Journal of Chemistry | 2014

Modification of PET surface properties using extremely non-equilibrium oxygen plasma

Ita Junkar; Martina Modic; Miran Mozeti

Abstract Polyethylene terephthalate (PET) foils have been exposed to oxygen plasma and its afterglow in order to reveal compositional and structural modifications of the surface layer. Oxygen plasma was created by electrode-less RF discharge in a glass chamber so the O-atom density was close to 1022 m-3 although the density of charged particles was only about 1 × 1016 m-3. Long-living reactive particles created in plasma were leaked into the afterglow chamber using a two-stage rotary pump of pumping speed 4.4 × 10-3 m3 s-1. The density of O-atoms in the afterglow as measured with a catalytic probe was 3 × 1021 m-3, while the density of reactive oxygen molecules was estimated theoretically. The functionalization was accomplished even after a brief exposure to either plasma or afterglow since all samples were saturated with oxygen-rich functional groups as revealed by XPS. The water contact angle measurements, however, showed that only plasma treatment allowed for super-hydrophilicity, explained by rich surface morphology as detected by AFM. The differences in morphological properties between plasma and afterglow treated samples were explained by different interaction mechanisms between low and high energy particles impinging the polymer surface. Graphical Abstract

Collaboration


Dive into the Martina Modic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ita Junkar

Tomas Bata University in Zlín

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G Gheorghe Dinescu

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ita Junkar

Tomas Bata University in Zlín

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge