Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Nardini is active.

Publication


Featured researches published by Martina Nardini.


Science Translational Medicine | 2012

Genetic Correction of Human Induced Pluripotent Stem Cells from Patients with Spinal Muscular Atrophy

Stefania Corti; Monica Nizzardo; Chiara Simone; Marianna Falcone; Martina Nardini; Dario Ronchi; Chiara Donadoni; Sabrina Salani; Giulietta Riboldi; Francesca Magri; Giorgia Menozzi; Clara Bonaglia; Federica Rizzo; Nereo Bresolin; Giacomo P. Comi

Motor neurons generated from genetically corrected iPSCs derived from patients with spinal muscular atrophy show rescue of the disease phenotype. Engineering iPSC-Derived Motor Neurons for Cell Therapy Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by mutations in the gene encoding the survival motor neuron 1 (SMN1) protein. The mutant protein causes loss of spinal cord motor neurons, and there is no effective therapy. Humans have a paralogous gene, SMN2, that differs from SMN1 by a single nucleotide variant within exon 7 that results in the production of an incomplete and nonfunctional protein. Now, Corti et al. investigate the feasibility of genetically engineering induced pluripotent stem cells (iPSCs) derived from SMA patients to generate motor neurons that do not show the disease phenotype. The authors generated human SMA-iPSCs using nonviral, nonintegrating episomal vectors and then performed genetic editing with oligonucleotides to modify SMN2 to produce a functional SMN1-like protein. Uncorrected SMA-iPSC–derived motor neurons reproduced disease-specific features, whereas motor neurons derived from genetically corrected SMA-iPSCs showed rescue of the disease phenotype. Upon direct transplantation into a severe SMA mouse model, corrected SMA-iPSC–derived motor neurons engrafted in the spinal cord and improved the disease phenotype. This study demonstrates the feasibility of generating patient-specific iPSCs and their motor neuron progeny that are genetically corrected and free of exogenous sequences and suggests the potential of this approach for clinical translation. Spinal muscular atrophy (SMA) is among the most common genetic neurological diseases that cause infant mortality. Induced pluripotent stem cells (iPSCs) generated from skin fibroblasts from SMA patients and genetically corrected have been proposed to be useful for autologous cell therapy. We generated iPSCs from SMA patients (SMA-iPSCs) using nonviral, nonintegrating episomal vectors and used a targeted gene correction approach based on single-stranded oligonucleotides to convert the survival motor neuron 2 (SMN2) gene into an SMN1-like gene. Corrected iPSC lines contained no exogenous sequences. Motor neurons formed by differentiation of uncorrected SMA-iPSCs reproduced disease-specific features. These features were ameliorated in motor neurons derived from genetically corrected SMA-iPSCs. The different gene splicing profile in SMA-iPSC motor neurons was rescued after genetic correction. The transplantation of corrected motor neurons derived from SMA-iPSCs into an SMA mouse model extended the life span of the animals and improved the disease phenotype. These results suggest that generating genetically corrected SMA-iPSCs and differentiating them into motor neurons may provide a source of motor neurons for therapeutic transplantation for SMA.


Journal of Clinical Investigation | 2008

Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy

Stefania Corti; Monica Nizzardo; Martina Nardini; Chiara Donadoni; Sabrina Salani; Dario Ronchi; Francesca Saladino; Andreina Bordoni; Francesco Fortunato; Roberto Del Bo; Dimitra Papadimitriou; Federica Locatelli; Giorgia Menozzi; Sandra Strazzer; Nereo Bresolin; Giacomo P. Comi

Spinal muscular atrophy (SMA), a motor neuron disease (MND) and one of the most common genetic causes of infant mortality, currently has no cure. Patients with SMA exhibit muscle weakness and hypotonia. Stem cell transplantation is a potential therapeutic strategy for SMA and other MNDs. In this study, we isolated spinal cord neural stem cells (NSCs) from mice expressing green fluorescent protein only in motor neurons and assessed their therapeutic effects on the phenotype of SMA mice. Intrathecally grafted NSCs migrated into the parenchyma and generated a small proportion of motor neurons. Treated SMA mice exhibited improved neuromuscular function, increased life span, and improved motor unit pathology. Global gene expression analysis of laser-capture-microdissected motor neurons from treated mice showed that the major effect of NSC transplantation was modification of the SMA phenotype toward the wild-type pattern, including changes in RNA metabolism proteins, cell cycle proteins, and actin-binding proteins. NSC transplantation positively affected the SMA disease phenotype, indicating that transplantation of NSCs may be a possible treatment for SMA.


Experimental Neurology | 2007

Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression.

Stefania Corti; Monica Nizzardo; Martina Nardini; Chiara Donadoni; Federica Locatelli; Dimitra Papadimitriou; Sabrina Salani; Roberto Del Bo; Serena Ghezzi; Sandra Strazzer; Nereo Bresolin; Giacomo P. Comi

The identification of strategies for the isolation of neural stem cells (NSCs) has important implications for the understanding of their biology and the development of therapeutic applications. It has been previously described that human neural stem and progenitor cells (NSPCs) can be isolated from the central nervous system (CNS) using antibodies to prominin (CD133) and fluorescence-activated cell sorting (FACS). Although this antigen displayed an identical membrane topology in several human and murine tissues there was uncertainty as to the relationship between human and mouse prominin because of the low level of amino acid identity. Here we show that prominin expression can be used to identify and isolate also murine NSPCs from the developing or adult brain. Prominin is co-expressed with known neural stem markers like SOX 1-2, Musashi and Nestin. Moreover, neurosphere-forming cells with multipotency and self-renewal capacity reside within the prominin-positive fraction. Transplantation experiments show that CD133-positive cells give rise to neurons and glial cells in vivo, and that many neurons display appropriate phenotypic characteristics of the recipient tissues. The demonstration that CD133 is a stem cell antigen for murine NSPCs as it is for human NSPCs is useful for the investigation of mammal neurogenesis and development of preclinical tests of NSPCs transplantation in mouse analogues of human diseases.


Experimental Cell Research | 2012

Direct reprogramming of human astrocytes into neural stem cells and neurons

Stefania Corti; Monica Nizzardo; Chiara Simone; Marianna Falcone; Chiara Donadoni; Sabrina Salani; Federica Rizzo; Martina Nardini; Giulietta Riboldi; Francesca Magri; Chiara Zanetta; Irene Faravelli; Nereo Bresolin; Giacomo P. Comi

Generating neural stem cells and neurons from reprogrammed human astrocytes is a potential strategy for neurological repair. Here we show dedifferentiation of human cortical astrocytes into the neural stem/progenitor phenotype to obtain progenitor and mature cells with a neural fate. Ectopic expression of the reprogramming factors OCT4, SOX2, or NANOG into astrocytes in specific cytokine/culture conditions activated the neural stem gene program and induced generation of cells expressing neural stem/precursor markers. Pure CD44 + mature astrocytes also exhibited this lineage commitment change and did not require passing through a pluripotent state. These astrocyte-derived neural stem cells gave rise to neurons, astrocytes, and oligodendrocytes and showed in vivo engraftment properties. ASCL1 expression further promoted neuronal phenotype acquisition in vitro and in vivo. Methylation analysis showed that epigenetic modifications underlie this process. The restoration of multipotency from human astrocytes has potential in cellular reprogramming of endogenous central nervous system cells in neurological disorders.


Brain | 2010

Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice.

Stefania Corti; Monica Nizzardo; Martina Nardini; Chiara Donadoni; Sabrina Salani; Dario Ronchi; Chiara Simone; Marianna Falcone; Dimitra Papadimitriou; Federica Locatelli; Nicoletta Mezzina; Francesca Gianni; Nereo Bresolin; Giacomo P. Comi

Spinal muscular atrophy, characterized by selective loss of lower motor neurons, is an incurable genetic neurological disease leading to infant mortality. We previously showed that primary neural stem cells derived from spinal cord can ameliorate the spinal muscular atrophy phenotype in mice, but this primary source has limited translational value. Here, we illustrate that pluripotent stem cells from embryonic stem cells show the same potential therapeutic effects as those derived from spinal cord and offer great promise as an unlimited source of neural stem cells for transplantation. We found that embryonic stem cell-derived neural stem cells can differentiate into motor neurons in vitro and in vivo. In addition, following their intrathecal transplantation into spinal muscular atrophy mice, the neural stem cells, like those derived from spinal cord, survived and migrated to appropriate areas, ameliorated behavioural endpoints and lifespan, and exhibited neuroprotective capability. Neural stem cells obtained using a drug-selectable embryonic stem cell line yielded the greatest improvements. As with cells originating from primary tissue, the embryonic stem cell-derived neural stem cells integrated appropriately into the parenchyma, expressing neuron- and motor neuron-specific markers. Our results suggest translational potential for the use of pluripotent cells in neural stem cell-mediated therapies and highlight potential safety improvements and benefits of drug selection for neuroepithelial cells.


Annals of Neurology | 2007

Fas small interfering RNA reduces motoneuron death in amyotrophic lateral sclerosis mice

Federica Locatelli; Stefania Corti; Dimitra Papadimitriou; Francesco Fortunato; Roberto Del Bo; Chiara Donadoni; Monica Nizzardo; Martina Nardini; Sabrina Salani; Serena Ghezzi; Sandra Strazzer; Nereo Bresolin; Giacomo P. Comi

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by selective motoneuron death. Understanding of the molecular mechanisms that trigger and regulate motoneuron degeneration could be relevant to ALS and other motoneuron disorders. This study investigates the role of Fas‐linked motoneuron death in the pathogenesis of ALS.


Human Molecular Genetics | 2010

Systemic transplantation of c-kit+ cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis

Stefania Corti; Monica Nizzardo; Martina Nardini; Chiara Donadoni; Sabrina Salani; Chiara Simone; Marianna Falcone; Giulietta Riboldi; Alessandra Govoni; Nereo Bresolin; Giacomo P. Comi

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, neurodegenerative disease characterized by the loss of motor neurons. Motor neuron degeneration is probably both a cell autonomous and a non-autonomous event. Therefore, manipulating the diseased microenvironment via non-neural cell replacement could be a therapeutic strategy. We investigated a cell therapy approach using intravascular injection to transplant a specific population of c-kit(+) stem/progenitor cells from bone marrow into the SOD1G93A mouse model of ALS. Transplanted cells engrafted within the host spinal cord. Cell transplantation significantly prolonged disease duration and lifespan in superoxide dismutase 1 mice, promoted the survival of motor neurons and improved neuromuscular function. Neuroprotection was mediated by multiple effects, in particular by the expression of primary astrocyte glutamate transporter GLT1 and by the non-mutant genome. These findings suggest that this type of somatic cell transplantation strategy merits further investigation as a possible effective therapy for ALS and other neurodegenerative diseases.


Neurobiology of Aging | 2008

Absence of angiogenic genes modification in Italian ALS patients.

Roberto Del Bo; Marina Scarlato; Serena Ghezzi; Filippo Martinelli-Boneschi; Stefania Corti; Federica Locatelli; Domenico Santoro; Alessandro Prelle; Chiara Briani; Martina Nardini; Gabriele Siciliano; Michelangelo Mancuso; Luigi Murri; Nereo Bresolin; Giacomo P. Comi

To investigate the role of vascular endothelial growth factor (VEGF) and angiogenin (ANG) as genetic determinants in the susceptibility to sporadic ALS in Italian patients. VEGF genotype and haplotype analysis revealed no association between any variants and the risk of ALS. Regarding ANG gene, no mutation was detected and the rs11701 polymorphism, previously described as associated with ALS, was not differently distributed between patients and controls. Overall, our data argue against the hypothesis of both genes as risk factors for motoneuron neurodegeneration, at least in an Italian population.


Experimental Neurology | 2011

Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms.

Monica Nizzardo; Martina Nardini; Dario Ronchi; Sabrina Salani; Chiara Donadoni; Francesco Fortunato; Giorgia Colciago; Marianna Falcone; Chiara Simone; Giulietta Riboldi; Alessandra Govoni; Nereo Bresolin; Giacomo P. Comi; Stefania Corti

Spinal muscular atrophy (SMA) is a devastating genetic motoneuron disease leading to infant death. No effective therapy is currently available. It has been suggested that β-lactam antibiotics such as ceftriaxone may offer neuroprotection in motoneuron diseases. Here, we investigate the therapeutic effect of ceftriaxone in a murine model of SMA. Treated animals present a modest, but significant ameliorated neuromuscular phenotype and increased survival, which correlate with protection of neuromuscular units. Whole gene expression profiling in treated mice demonstrates modifications in several genes including those involved in RNA metabolism toward wild-type. The neuroprotective effect seems to be mediated by multiple mechanisms that encompass the increase of the glutamate transporter Glt1, the transcription factor Nrf2, as well as SMN protein. This study provides the first evidence of a potential positive effect of this class of molecules in SMA. Further investigation of analogs with increased and more specific therapeutic effects warrants the development of useful therapies for SMA.


Neurological Sciences | 2007

Lack of association between mtDNA haplogroups and Alzheimer’s disease in Tuscany

Michelangelo Mancuso; Martina Nardini; D Micheli; Anna Rocchi; Claudia Nesti; Nj Giglioli; Lucia Petrozzi; C Rossi; Roberto Ceravolo; Andrea Bacci; Anna Choub; Giulia Ricci; Gloria Tognoni; Maria Laura Manca; Gabriele Siciliano; Luigi Murri

Mitochondrial DNA (mtDNA) haplogroup-specific polymorphisms were previously related to several neurodegenerative diseases, including Alzheimer’s disease (AD). However, the precise role of mtDNA haplogroups in the neurodegenerative cascade leading to AD is still unclear. In this work we have genotyped predefined European mtDNA haplogroups in 209 patients with AD and 191 matched controls. In order to minimise the risk of “genetic contamination”, which could lead to false associations between gene markers and disease, we were careful to enrol in the study only patients and controls of clear Tuscan origin (with at least three generations of Tuscanborn relatives). The frequency of the haplogroups did not differ between the two groups, and no correlation with gender, ApoE genotype, age of onset or disease status was observed. Further studies will be required to define the contribution of mtDNA haplogroups, if any, to the pathogenesis of AD. A correct population selection, in order to minimise the risk of genetic contamination, is essential in these studies.

Collaboration


Dive into the Martina Nardini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge