Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Pollastrini is active.

Publication


Featured researches published by Martina Pollastrini.


Photosynthesis Research | 2014

Frequently asked questions about in vivo chlorophyll fluorescence: practical issues

Hazem M. Kalaji; Gert Schansker; Richard J. Ladle; Vasilij Goltsev; Karolina Bosa; Suleyman I. Allakhverdiev; Marian Brestic; Filippo Bussotti; Angeles Calatayud; Piotr Dąbrowski; Nabil I. Elsheery; Lorenzo Ferroni; Lucia Guidi; Sander W. Hogewoning; Anjana Jajoo; Amarendra Narayan Misra; Sergio G. Nebauer; Simonetta Pancaldi; Consuelo Penella; DorothyBelle Poli; Martina Pollastrini; Zdzisława Romanowska-Duda; B. Rutkowska; João Serôdio; K. Suresh; W. Szulc; Eduardo Tambussi; Marcos Yanniccari; Marek Zivcak

The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Tree diversity does not always improve resistance of forest ecosystems to drought

Charlotte Grossiord; André Granier; Sophia Ratcliffe; Olivier Bouriaud; Helge Bruelheide; Ewa Chećko; David I. Forrester; Seid Muhie Dawud; Leena Finér; Martina Pollastrini; Michael Scherer-Lorenzen; Fernando Valladares; Damien Bonal; Arthur Gessler

Significance In the context of climate change, expected drier and warmer environmental conditions will have drastic consequences on forest functions and services and may bring about important drought-induced die-off events. Biodiversity promotes forest ecosystem performance and resistance to insect pests and diseases, but whether or not diverse forests are also better adapted to deal with drought stress remains unknown. Within our study network of 160 forest stands across Europe, we found that mixed species forests are less exposed to drought stress in some regions only. Therefore, managing forest ecosystems for high tree species diversity does not necessarily assure improved resistance to the more severe and frequent drought events predicted for the future. Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ13CS). Δδ13CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Biotic homogenization can decrease landscape-scale forest multifunctionality

Fons van der Plas; Peter Manning; Santiago Soliveres; Eric Allan; Michael Scherer-Lorenzen; Kris Verheyen; Christian Wirth; Miguel A. Zavala; Evy Ampoorter; Lander Baeten; Luc Barbaro; Jürgen Bauhus; Raquel Benavides; Adam Benneter; Damien Bonal; Olivier Bouriaud; Helge Bruelheide; Filippo Bussotti; Monique Carnol; Bastien Castagneyrol; Yohan Charbonnier; David A. Coomes; Andrea Coppi; Christina C. Bestias; Seid Muhie Dawud; Hans De Wandeler; Timo Domisch; Leena Finér; Arthur Gessler; André Granier

Significance Numerous studies have demonstrated the importance of biodiversity in maintaining multiple ecosystem functions and services (multifunctionality) at local spatial scales, but it is unknown whether similar relationships are found at larger spatial scales in real-world landscapes. Here, we show, for the first time to our knowledge, that biodiversity can also be important for multifunctionality at larger spatial scales in European forest landscapes. Both high local (α-) diversity and a high turnover in species composition between locations (high β-diversity) were found to be potentially important drivers of ecosystem multifunctionality. Our study provides evidence that it is important to conserve the landscape-scale biodiversity that is being eroded by biotic homogenization if ecosystem multifunctionality is to be maintained. Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.


Tree Physiology | 2012

Chlorophyll a fluorescence analysis along a vertical gradient of the crown in a poplar (Oxford clone) subjected to ozone and water stress

Rosanna Desotgiu; Martina Pollastrini; Chiara Cascio; Giacomo Alessandro Gerosa; Riccardo Marzuoli; Filippo Bussotti

An experiment in open-top chambers was carried out in summer 2008 at Curno (Northern Italy) in order to study the effects of ozone and mild water stress on poplar cuttings (Oxford clone). In this experiment direct fluorescence parameters (JIP-test) were measured in leaves from different sections of the crown (L: lower; M: medium; U: upper parts of the crown). The parameters considered were calculated at the different steps of the fluorescence transient, and include maximum quantum yield efficiency in the dark-adapted state (F(v)/F(M)); the L-band, at 100 ∝ s, that expresses the stability of the tripartite system reaction centre-harvesting light complex-core antenna; the K-band, at 300 ∝ s, that expresses the efficiency of the oxygen-evolving complex; the J-phase, at 2 ms, that expresses the efficiency with which a trapped exciton can move an electron into the electron transport chain from Q(A)(-) to the intersystem electron acceptors; the IP-phase, which expresses the efficiency of electron transport around the photosystem 1 (PSI) to reduce the final acceptors of the electron transport chain, i.e., ferredoxin and NADP; and finally the performance index total (PItot) for energy conservation from photons absorbed by PSII to the reduction flux of PSI end acceptors. The main results are: (i) different dynamics were observed between leaves in the lower section, whose PItot decreased over time, and those in the upper sections in which it increased, with a dynamic connected to the leaf age; (ii) ozone depressed all the considered fluorescence parameters in basal leaves of well-watered plants, while it had little or no damaging effect on medium-level or upper-section leaves; (iii) PItot and IP-phase increased in upper leaves of plants subjected to ozone stress, as well as the net photosynthesis; (iv) water stress increased PItot of leaves in all levels of the crown. The results suggest that ozone-damaged poplar plants compensate, at least partially, for the loss of photosynthesis with higher photosynthetic rates in young leaves (in the upper section of the crown), more efficient to fix carbon.


Plant Biology | 2014

Interactions and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology.

Martina Pollastrini; V. Holland; Wolfgang Brüggemann; Julia Koricheva; I. Jussila; Michael Scherer-Lorenzen; S. Berger; Filippo Bussotti

Chlorophyll a fluorescence (ChlF) and leaf morphology were assessed in two sites in Europe (Kaltenborn, Germany, and Satakunta, Finland) within a forest diversity experiment. Trees at Satakunta, planted in 1999, form a stratified canopy, while in Kaltenborn the trees are 7 years old, with no apparent canopy connection among broadleaf species. The following ChlF parameters from measured OJIP transient curves were examined: F(V)/F(M) (a proxy for maximum quantum yield); ΨEo (a proxy for efficiency in transferring an electron from reduced QA to the electron transport chain); I-P phase (a proxy for efficiency of reducing final acceptors beyond PSI); and PItot (total performance index for potential energy conservation from photons absorbed by PSII to reduction of PSI end acceptors). At Satakunta F(V)/F(M) and ΨEo in Betula pendula were higher in monocultures and lower in mixed plots, perhaps due to increasing light availability in mixed plots, which can induce photoinhibition. The opposite trend was observed in Picea abies, which was shaded in mixed plots. At Kaltenborn F(V)/F(M) decreased in Fagus sylvatica and P. abies in mixed plots due to competition both above- and belowground. At Satakunta LMA increased in B. pendula leaves with increasing species richness. Leaf area of ten leaves was reduced in F. sylvatica in mixed plots at Kaltenborn. By up-scaling the overall fluorescence response to plot level (PItot_plot ), a significant positive correlation with tree diversity was found at Kaltenborn, but not at Satakunta. This could suggest that competition/facilitation processes in mixed stands play a significant role in the early stages of forest establishment, but then tend to be compensated in more mature stands.


Journal of Applied Ecology | 2016

Drought responses by individual tree species are not often correlated with tree-species diversity in European forests

David I. Forrester; Damien Bonal; Seid Muhie Dawud; Arthur Gessler; André Granier; Martina Pollastrini; Charlotte Grossiord

Drought frequency and intensity are predicted to increase in many parts of the Northern Hemisphere and the effects of such changes on forest growth and tree mortality are already evident in many regions around the world. Mixed-species forests and increasing tree species diversity have been put forward as important risk reduction and adaptation strategies in the face of climate change. However, little is known about whether the species interactions that occur in diverse forests will reduce drought susceptibility or water stress. In this study, we focused on the effect of drought on individual tree species (n=16) within six regions of Europe and assessed whether this response was related to tree species diversity and stand density, and whether community-level responses resulted from many similar or contrasting species-level responses. For each species in each plot, we calculated the increase in carbon isotope composition of latewood from a wet to a dry year (C-13) as an estimate of its drought stress level. When significant community-level relationships occurred (three of six regions), there was only one species within the given community that showed a significant relationship (three of 25 species-region combinations), showing that information about a single species can be a poor indicator of the response of other species or the whole community. There were many two-species mixtures in which both species were less water-stressed compared with their monocultures, but also many mixtures where both species were more stressed compared with their monocultures. Furthermore, a given species combination responded differently in different regions.Synthesis and applications. Our study shows that drought stress may sometimes be reduced in mixed-species forests, but this is not a general pattern, and even varies between sites for a given combination. The management or prediction of drought stress requires consideration of the physiological characteristics of the mixed species, and how this complements the water-related climatic and edaphic features of the site, rather than species richness. Our study shows that drought stress may sometimes be reduced in mixed-species forests, but this is not a general pattern, and even varies between sites for a given combination. The management or prediction of drought stress requires consideration of the physiological characteristics of the mixed species, and how this complements the water-related climatic and edaphic features of the site, rather than species richness.


Plant Biosystems | 2012

Short and long term photosynthetic adjustments in sun and shade leaves of Fagus sylvatica L., investigated by fluorescence transient (FT) analysis

Rosanna Desotgiu; Chiara Cascio; Martina Pollastrini; Giacomo Alessandro Gerosa; Riccardo Marzuoli; Filippo Bussotti

Abstract Fluorescence transient (FT) analysis (fast kinetics) was carried out on sun and shade leaves of beech seedlings in an experimental field at Curno (North Italy), during the 2008 growing season (June–August). The aim of the research was to determine: (1) morphology in sun leaves as long term acclimation to high light; (2) short term responses to high light, i.e. during the course of the day; (3) evolution of responses during the growing season and the ageing process. Sun leaves differ from shade leaves by their lower trapping capacity (expressed by the ratio FV/FM) and higher capacity to reduce end acceptors beyond PSI (expressed by phase I–P of the FT). These features were assessed at pre-dawn, when the entire plant is fully dark-adapted. Short term responses (differences between midday and pre-dawn assessments) occur especially in sun leaves, indicating that the photosynthetic machinery reacts to the high excitation pressure by increasing photochemical and non-photochemical de-excitation processes. Other responses concern the inactivation of the oxygen evolving system and a stability loss of the tripartite system reaction centre (RC) – harvesting light complex – core antenna, expressed by the onset of K and L-bands at midday. Sun leaves are well acclimated to high light from a structural and functional point of view, however, the irradiance at midday provokes conditions of instability in the photosynthetic machinery, possibly through reactive oxygen species (ROS) production at both PSII and PSI sides. The temporal patterns across the growing season indicate the progression of senescence processes, that are more pronounced in sun leaves which present a permanent (chronic) condition of photoinhibition. Differences between sun and shade leaves decrease over time.


Photosynthetica | 2013

Responses to ozone on Populus "Oxford" clone in an open top chamber experiment assessed before sunrise and in full sunlight

Rosanna Desotgiu; Martina Pollastrini; Chiara Cascio; Giacomo Alessandro Gerosa; Riccardo Marzuoli; Filippo Bussotti

The effects of ambient levels of ozone and summer drought were assessed on a poplar clone (Populus maximowiczii Henry X P. × berolinensis Dippel — Oxford clone) in an open top chamber experiment carried out at the Curno facilities (Northern Italy). Chlorophyll (Chl) a fluorescence parameters (from both modulated and direct fluorescence) were assessed at different hours of the day (predawn, morning, midday, afternoon, and evening), from June to August 2008. This paper compares the results from predawn (PD, before sunrise) and afternoon (AN, in full sunlight) measurements, in order to evaluate the role of high sunlight as a factor influencing responses to ozone stress. Sunlight affected the maximum quantum yield of primary photochemistry (decrease of Fv/Fm) thus indicating photoinhibition. The effective quantum yield (ΦPSII) and the photochemical quenching (qP) were enhanced in the afternoon with respect to the predawn, whereas the nonphotochemical quenching (NPQ) was reduced. The effect of ozone was detected with fluorescence on well watered plants in the first week of July, before the onset of visible symptoms. As far as Fv/Fm are concerned, the differences between ozone-treated and control plants were statistically significant in the predawn, but not in the afternoon. Ozone exerted only minor effects on drought exposed plants because of the reduced stomatal ozone uptake, but effects on the IP phase of the fluorescence transient were observed also in drought-stressed plants.


Ecology Letters | 2017

Biodiversity and ecosystem functioning relations in European forests depend on environmental context

Sophia Ratcliffe; Christian Wirth; Tommaso Jucker; Fons van der Plas; Michael Scherer-Lorenzen; Kris Verheyen; Eric Allan; Raquel Benavides; Helge Bruelheide; Bettina Ohse; Alain Paquette; Evy Ampoorter; Cristina C. Bastias; Jürgen Bauhus; Damien Bonal; Olivier Bouriaud; Filippo Bussotti; Monique Carnol; Bastien Castagneyrol; Ewa Chećko; Seid Muhie Dawud; Hans De Wandeler; Timo Domisch; Leena Finér; Markus Fischer; Mariangela N. Fotelli; Arthur Gessler; André Granier; Charlotte Grossiord; Virginie Guyot

The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.


Scandinavian Journal of Forest Research | 2010

The JIP test: a tool to screen the capacity of plant adaptation to climate change

Filippo Bussotti; Rosanna Desotgiu; Martina Pollastrini; Chiara Cascio

Abstract Adaptation and acclimation are strategies that forests enact to cope with climate change. They consist of genotypic and phenotypic adjustments that allow plants to grow and reproduce successfully in a stressful environment. Both these aspects can be actively promoted by reforestation programmes. The key phases are: (1) selection of the most suitable provenances and genotypes; (2) adoption of adequate cultural techniques in nursery; and (3) monitoring of the plantations. Physiological techniques may be useful to assist all the phases of this process. Among these, chlorophyll fluorescence-based techniques, such as the JIP test, are relevant to monitor the stress conditions and the effectiveness of the cultural practices. JIP test is a non-destructive, non-invasive, informative, very fast and inexpensive technique, and can be used to support the cultural decision.

Collaboration


Dive into the Martina Pollastrini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giacomo Alessandro Gerosa

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Granier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge