Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Schmitz is active.

Publication


Featured researches published by Martina Schmitz.


Circulation | 2006

High-Density Lipoproteins and Their Constituent, Sphingosine-1-Phosphate, Directly Protect the Heart Against Ischemia/Reperfusion Injury In Vivo via the S1P3 Lysophospholipid Receptor

Gregor Theilmeier; Christoph Schmidt; Jörg Herrmann; Petra Keul; Michael Schäfers; Ilka Herrgott; Jan Mersmann; Jan Larmann; Sven Hermann; Jörg Stypmann; Otmar Schober; Reinhard Hildebrand; Rainer Schulz; Gerd Heusch; Michael Haude; Karin von Wnuck Lipinski; Christine Herzog; Martina Schmitz; Raimund Erbel; Jerold Chun; Bodo Levkau

Background— All treatments of acute myocardial infarction are aimed at rapid revascularization of the occluded vessel; however, no clinical strategies are currently available to protect the heart from ischemia/reperfusion injury after restitution of blood flow. We hypothesized that some of the cholesterol transport–independent biological properties of high-density lipoprotein (HDL) implied in atheroprotection may also be beneficial in settings of acute myocardial reperfusion injury. Methods and Results— In an in vivo mouse model of myocardial ischemia/reperfusion, we observed that HDL and its sphingolipid component, sphingosine-1-phosphate (S1P), dramatically attenuated infarction size by ≈20% and 40%, respectively. The underlying mechanism was an inhibition of inflammatory neutrophil recruitment and cardiomyocyte apoptosis in the infarcted area. In vitro, HDL and S1P potently suppressed leukocyte adhesion to activated endothelium under flow and protected rat neonatal cardiomyocytes against apoptosis. In vivo, HDL- and S1P-mediated cardioprotection was dependent on nitric oxide (NO) and the S1P3 lysophospholipid receptor, because it was abolished by pharmacological NO synthase inhibition and was completely absent in S1P3-deficient mice. Conclusions— Our data demonstrate that HDL and its constituent, S1P, acutely protect the heart against ischemia/reperfusion injury in vivo via an S1P3-mediated and NO-dependent pathway. A rapid therapeutic elevation of S1P-containing HDL plasma levels may be beneficial in patients at high risk of acute myocardial ischemia.


PLOS ONE | 2012

Non-random integration of the HPV genome in cervical cancer.

Martina Schmitz; Corina Driesch; Lars E. T. Jansen; Ingo B. Runnebaum; Matthias Dürst

HPV DNA integration into the host genome is a characteristic but not an exclusive step during cervical carcinogenesis. It is still a matter of debate whether viral integration contributes to the transformation process beyond ensuring the constitutive expression of the viral oncogenes. There is mounting evidence for a non-random distribution of integration loci and the direct involvement of cellular cancer-related genes. In this study we addressed this topic by extending the existing data set by an additional 47 HPV16 and HPV18 positive cervical carcinoma. We provide supportive evidence for previously defined integration hotspots and have revealed another cluster of integration sites within the cytogenetic band 3q28. Moreover, in the vicinity of these hotspots numerous microRNAs (miRNAs) are located and may be influenced by the integrated HPV DNA. By compiling our data and published reports 9 genes could be identified which were affected by HPV integration at least twice in independent tumors. In some tumors the viral-cellular fusion transcripts were even identical with respect to the viral donor and cellular acceptor sites used. However, the exact integration sites are likely to differ since none of the integration sites analysed thus far have shown more than a few nucleotides of homology between viral and host sequences. Therefore, DNA recombination involving large stretches of homology at the integration site can be ruled out. It is however intriguing that by sequence alignment several regions of the HPV16 genome were found to have highly homologous stretches of up to 50 nucleotides to the aforementioned genes and the integration hotspots. One common region of homologies with cellular sequences is between the viral gene E5 and L2 (nucleotides positions 4100 to 4240). We speculate that this and other regions of homology are involved in the integration process. Our observations suggest that targeted disruption, possibly also of critical cellular genes, by HPV integration remains an issue to be fully resolved.


PLOS ONE | 2013

Multiplex Identification of Human Papillomavirus 16 DNA Integration Sites in Cervical Carcinomas

Bo Xu; Sasithorn Chotewutmontri; Stephan Wolf; Ursula Klos; Martina Schmitz; Matthias Dürst; Elisabeth Schwarz

Cervical cancer is caused by high-risk human papillomaviruses (HPV), in more than half of the worldwide cases by HPV16. Viral DNA integration into the host genome is a frequent mutation in cervical carcinogenesis. Because integration occurs into different genomic locations, it creates unique viral-cellular DNA junctions in every single case. This singularity complicates the precise identification of HPV integration sites enormously. We report here the development of a novel multiplex strategy for sequence determination of HPV16 DNA integration sites. It includes DNA fragmentation and adapter tagging, PCR enrichment of the HPV16 early region, Illumina next-generation sequencing, data processing, and validation of candidate integration sites by junction-PCR. This strategy was performed with 51 cervical cancer samples (47 primary tumors and 4 cell lines). Altogether 75 HPV16 integration sites (3′-junctions) were identified and assigned to the individual samples. By comparing the DNA junctions with the presence of viral oncogene fusion transcripts, 44 tumors could be classified into four groups: Tumors with one transcriptionally active HPV16 integrate (n = 12), tumors with transcribed and silent DNA junctions (n = 8), tumors carrying episomal HPV16 DNA (n = 10), and tumors with one to six DNA junctions, but without fusion transcripts (n = 14). The 3′-breakpoints of integrated HPV16 DNA show a statistically significant (p<0.05) preferential distribution within the early region segment upstream of the major splice acceptor underscoring the importance of deregulated viral oncogene expression for carcinogenesis. Half of the mapped HPV16 integration sites target cellular genes pointing to a direct influence of HPV integration on host genes (insertional mutagenesis). In summary, the multiplex strategy for HPV16 integration site determination worked very efficiently. It will open new avenues for comprehensive mapping of HPV integration sites and for the possible use of HPV integration sites as individualized biomarkers after cancer treatment of patients for the early diagnosis of residual and recurrent disease.


Gut | 2010

Endocytotic segregation of gliadin peptide 31–49 in enterocytes

Klaus-Peter Zimmer; Ina Fischer; Thomas Mothes; Gabriele Weissen-Plenz; Martina Schmitz; Herbert Wieser; Jürgen Büning; Markus M. Lerch; Paul C Ciclitira; Peter Weber; Hassan Y. Naim

Objective Coeliac disease (CD) is a multisystemic autoimmune inflammation of the intestinal tract induced by wheat gluten and related cereals in human leucocyte antigen (HLA)-DQ2/8-positive individuals. The molecular mechanisms relevant to oral tolerance induction towards toxic cereals such as gliadin remain poorly understood. Enterocytes, which express predominantly HLA-DR proteins, are capable of processing, transcytosing and presenting food antigens from the intestinal lumen to T lymphocytes of the lamina propria. Methods Epitope-specific monoclonal antigliadin antibodies are utilised to unravel the intraepithelial transport processes of gliadin peptides in human duodenal biopsy specimens from patients with CD and reconstitute the transepithelial and endocytic pathways of gliadin in intestinal epithelial HT29 cells. Results The gliadin peptide AA 31–49 is segregated from the peptides AA 56–68 and AA 229–246 along the endosomal pathway. Thus, AA 31–49 bypasses HLA-DR-positive late endosomes in intestinal cells and in biopsy specimens of patients with untreated CD. Further, it is localised in early endosomes and consequently escapes antigen presentation at the basolateral membrane, unlike peptides AA 56–68 and AA 229–246 that reach HLA-DR-positive late endosomes. Strikingly, forms of gliadin peptide AA 31–49 conjugated to cholera toxin B are sorted into late endosomes of HT29 cells. Conclusions Endocytic segregation of gliadin peptide AA 31–49 seems to be a constitutive process. It explains why this peptide cannot stimulate gluten-sensitive T cells. Presentation of gliadin peptides by HLA-DR proteins via late endosomes within enterocytes might induce a tolerogenic effect and constitutes a potentially promising therapeutic approach for induction of tolerance towards gliadin.


International Journal of Cancer | 2012

Loss of gene function as a consequence of human papillomavirus DNA integration

Martina Schmitz; Corina Driesch; Katrin Beer-Grondke; Lars E. T. Jansen; Ingo B. Runnebaum; Matthias Dürst

Integration of the human papillomavirus (HPV) genome into the host chromatin is a characteristic step in cervical carcinogenesis. Integration ensures constitutive expression of the viral oncogenes E6 and E7 which drive carcinogenesis. However, integration has also an impact on host DNA. There is increasing evidence that integration not only occurs in fragile sites and translocation breakpoints but also in transcriptionally active regions. Indeed, a substantial number of integration sites actually disrupt host genes and may thereby affect gene expression. No doubt, even subtle changes in gene expression may influence the cell phenotype but small fold changes are difficult to quantify reliably in biopsy material. We have, therefore, addressed the question whether a complete loss of gene function that is insertional mutagenesis in combination with deletion or epigenetic modification of the second allele is also a phenomenon pertinent to cervical cancer. Out of the ten preselected squamous cell carcinomas analyzed, all viral integration sites were located within the intron sequences of known genes, giving rise to viral–cellular fusion transcripts of sense orientation. Moreover, for two tumors, we provide evidence for complete functional loss of the gene affected by HPV integration. Of particular note is that one of the genes involved is the recently described novel tumor suppressor gene castor zinc finger 1. Although our study provides no functional proof that any of the genes affected by HPV integration are causally involved in the transformation process, an exhaustive systematic look at the role of insertional mutagenesis in cervical cancer appears to be warranted.


PLOS ONE | 2014

A promising DNA methylation signature for the triage of high-risk human papillomavirus DNA-positive women.

Alfred Hansel; Daniel Steinbach; Christiane Greinke; Martina Schmitz; Juliane Eiselt; Cornelia Scheungraber; Mieczyslaw Gajda; Heike Hoyer; Ingo B. Runnebaum; Matthias Dürst

High-risk human papillomavirus (hrHPV)-DNA testing is frequently performed parallel to cytology for the detection of high-grade dysplasia and cervical cancer particularly in women above 30 years of age. Although highly sensitive, hrHPV testing cannot distinguish between HPV-positive women with or without clinically relevant lesions. However, in principle discrimination is possible on the basis of DNA methylation markers. In order to identify novel DNA regions which allow an effective triage of hrHPV-positive cases, hypermethylated DNA enriched from cervical cancers was compared with that from cervical scrapes of HPV16-positive cases with no evidence for disease by CpG island microarray hybridization. The most promising marker regions were validated by quantitative methylation-specific PCR (qMSP) using DNA from archived cervical tissues and cervical scrapes. The performance of these markers was then determined in an independent set of 217 hrHPV-positive cervical scrapes from outpatients with histopathological verification. A methylation signature comprising the 5′ regions of the genes DLX1, ITGA4, RXFP3, SOX17 and ZNF671 specific for CIN3 and cervical cancer (termed CIN3+) was identified and validated. A high detection rate of CIN3+ was obtained if at least 2 of the 5 markers were methylated. In the subsequent cross-sectional study all cervical carcinomas (n = 19) and 56% (13/23) of CIN3 were identified by this algorithm. Only 10% (11/105) of hrHPV-positive women without histological evidence of cervical disease were scored positive by the methylation assay. Of note is that the detection rate of CIN3 differed between age groups. Eight of nine CIN3 were detected among women ≥30 years of age but only five of fourteen among <30 year old group (p = 0.03). The specificity for CIN3+ in the older age group was 76.6% (95% CI 65.6–85.5%). Clinical validation studies are required to determine the usefulness of these novel markers for triage after primary hrHPV testing in a cervical cancer screening setting.


Cardiovascular Research | 2008

Inhibition of protein phosphatase 1 by inhibitor-2 exacerbates progression of cardiac failure in a model with pressure overload

Stephanie Grote-Wessels; Hideo Baba; Peter Boknik; Ali El-Armouche; Larissa Fabritz; Hans-Jörg Gillmann; Dana Kucerova; Marek Matus; Frank U. Müller; Joachim Neumann; Martina Schmitz; Frank Stümpel; Gregor Theilmeier; Jeremias Wohlschlaeger; Wilhelm Schmitz; Uwe Kirchhefer

AIMS The progression of human heart failure is associated with increased protein phosphatase 1 (PP1) activity, which leads to a higher dephosphorylation of cardiac regulatory proteins such as phospholamban. In this study, we tested the hypothesis whether the inhibitor-2 (I-2) of PP1 can mediate cardiac protection by inhibition of PP1 activity. METHODS AND RESULTS We induced pressure overload by transverse aortic constriction (TAC) for 28 days in transgenic (TG) mice with heart-directed overexpression of a constitutively active form of I-2 (TG(TAC)) and wild-type littermates (WT(TAC)). Both groups were compared with sham-operated mice. TAC treatment resulted in comparable ventricular hypertrophy in both groups. However, TG(TAC) exhibited a higher atrial mass and an enhanced ventricular mRNA expression of beta-myosin heavy chain. The increased afterload was associated with the development of focal fibrosis in TG. Consistent with signs of overt heart failure, fractional shortening and diastolic function were impaired in TG(TAC) as revealed by Doppler echocardiography. The contractility was reduced in catheterized banded TG mice, which is in line with a depressed shortening of isolated myocytes. This is due to profoundly abnormal cytosolic Ca(2+) transients and a reduced stimulation of phosphorylation of phospholamban (PLB)(Ser16) after TAC in TG mice. Moreover, administration of isoproterenol was followed by a blunted contractile response in isolated myocytes of TG(TAC) mice. CONCLUSION These results suggest that cardiac-specific overexpression of a constitutively active form of I-2 is deleterious for cardiac function under conditions of pressure overload. Thus, the long-term inhibition of PP1 by I-2 is not a therapeutic option in the treatment of heart failure.


European Journal of Immunology | 2005

Interferon-γ mediates antigen trafficking to MHC class II-positive late endosomes of enterocytes

Jürgen Büning; Martina Schmitz; Birthe Repenning; D. Ludwig; Marcus Alexander Schmidt; Stephan Strobel; Klaus-Peter Zimmer

MHC class II‐positive late endosomes of enterocytes are thought to be involved in antigen presentation to CD4+ T cells. In contrast to enterocytes of BALB/c mice, severe combined immunodeficiency (SCID) enterocytes lack MHC class II expression and fail to transport internalized ovalbumin (OVA) into late endosomes. IFN‐γ is known to induce MHC class II in enterocytes and antigen targeting to late endosomes in macrophages. In this study, we investigated the influence of IFN‐γ and MHC class II on the processes of antigen traffic in enterocytes. Subcellular targeting of OVA and MHC class II expression within enterocytes were examined in SCID, IFN‐γ‐treated SCID, BALB/c and C57BL/6 MHC class II knockout (KO) mice after a single feed with OVA. Sorting of OVA into late endosomes was found in enterocytes from BALB/c, C57BL/6 KO and IFN‐γ‐stimulated SCID mice, but not from untreated SCID mice. MHC class II expression was restricted to enterocytes of IFN‐γ‐treated SCID and BALB/c mice, present at basolateral membranes and within endosomal compartments. These enterocytes further revealed colocalization of class II antigens and OVA in endosomes. We suggest that antigen trafficking into late endosomes of enterocytes is mediated by IFN‐γ and occurs in the absence of MHC class II.


Cardiovascular Research | 2011

Syndecan-4 signalling inhibits apoptosis and controls NFAT activity during myocardial damage and remodelling

Frank Echtermeyer; Thomas Harendza; Svenja Hubrich; Anika Lorenz; Christine Herzog; Martin Mueller; Martina Schmitz; Andrea Grund; Jan Larmann; Jörg Stypmann; Bernhard Schieffer; Ralf Lichtinghagen; Denise Hilfiker-Kleiner; Kai C. Wollert; Jörg Heineke; Gregor Theilmeier

AIMS Myocardial infarction (MI) results in acute impairment of left ventricular (LV) function through the initial development of cardiomyocyte death and subsequent progression of LV remodelling. The expression of syndecan-4 (Sdc4), a transmembrane proteoglycan, is up-regulated after MI, but its function in the heart remains unknown. Here, we characterize the effects of Sdc4 deficiency in murine myocardial ischaemia and permanent infarction. METHODS AND RESULTS Targeted deletion of Sdc4 (Sdc4(-/-)) leads to increased myocardial damage after ischaemic-reperfusion injury due to enhanced cardiomyocyte apoptosis associated with reduced activation of extracellular signal-regulated kinase in cardiomyocytes in vitro and in vivo. After ischaemic-reperfusion injury and permanent infarction, we observed an increase in cardiomyocyte area, nuclear translocation of nuclear factor of activated T cells (NFAT), and transcription of the NFAT target rcan1.4 in wild-type mice. NFAT pathway activation was enhanced in Sdc4(-/-) mice. In line with the in vivo data, NFAT activation and hypertrophy occurs in isolated cardiomyocytes with reduced Sdc4 expression during phenylephrine stimulation in vitro. Despite the initially increased myocardial damage, echocardiography revealed improved LV geometry and function in Sdc4(-/-) mice 7 days after MI. CONCLUSION Interception of the Sdc4 pathway enhances infarct expansion and hypertrophic remodelling during early infarct healing in ischaemic-reperfusion injury and permanent infarction mouse models and exerts net beneficial effects on LV function.


The FASEB Journal | 2005

Antigen targeting to MHC class II-enriched late endosomes in colonic epithelial cells: trafficking of luminal antigens studied in vivo in Crohn’s colitis patients

Jürgen Büning; Gheorghe Hundorfean; Martina Schmitz; Klaus-Peter Zimmer; Stephan Strobel; Andreas Gebert; D. Ludwig

In Crohns disease (CD), colonic epithelial cells (CECs) are suggested to stimulate pro‐inflammatory CD4+ T cells. However, the endocytic pathways of luminal antigens involved in underlying MHC class II presentation by CECs remain unknown. Our aim was to elucidate antigen trafficking and associated MHC class II expression in CECs of CD patients in vivo. In CD patients (Crohns colitis and remission) and healthy controls undergoing colonoscopy, ovalbumin (OVA) was sprayed onto inflamed or healthy mucosa. The subcellular localization of OVA and MHC class II was visualized in biopsies taken from OVA‐incubated mucosa using fluorescence and cryoelectron microscopy. Targeting of OVA into late endosomes of CECs was found in healthy (controls and CD in remission) and inflamed mucosa (Crohns colitis). MHC class II expression in CECs was not detected in healthy mucosa but strongly up‐regulated during CD inflammation. Induced MHC class II in CECs was predominantly seen at basolateral membranes and in late endosomes, which were efficiently accessed by internalized OVA. Our data provide in vivo evidence that the endocytic pathway of luminal antigens in CECs of Crohns colitis patients intersects MHC class II‐enriched late endosomes and support the postulated role of CECs in MHC class II‐associated antigen presentation during CD.

Collaboration


Dive into the Martina Schmitz's collaboration.

Top Co-Authors

Avatar

Jan Larmann

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregor Theilmeier

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Gregor Theilmeier

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anika Lorenz

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge