Martine A. Collart
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martine A. Collart.
Molecular and Cellular Biology | 1990
Martine A. Collart; P. Baeuerle; Pierre Vassalli
This study characterizes the interaction of murine macrophage nuclear proteins with the tumor necrosis factor alpha (TNF-alpha) promoter. Gel retardation and methylation interference assays showed that stimulation of TNF-alpha gene transcription in peritoneal exudate macrophages was accompanied by induction of DNA-binding proteins that recognized with different affinities four elements related to the kappa B consensus motif and a Y-box motif. We suggest that the basal level of TNF-alpha expression in macrophages is due to the binding of a constitutive form of NF-kappa B, present at low levels in nuclei from resting thioglycolate exudate peritoneal macrophages, to some if not all of the kappa B motifs; we postulate that this constitutive form contains only the 50-kilodalton (kDa) DNA-binding protein subunits of NF-kappa B, not the 65-kDa protein subunits (P. Baeuerle and D. Baltimore, Genes Dev. 3:1689-1698, 1989). Agents such as glucocorticoids, which decrease TNF-alpha transcription, diminished the basal level of nuclear NF-kappa B. Stimulation of Stimulation of TNF-alpha transcription in macrophages by lipopolysaccharide, gamma interferon, or cycloheximide led to an increased content of nuclear NF-kappa B. This induced factor represents a different form of NF-kappa B, since it generated protein-DNA complexes of slower mobility; we propose that this induced form of NF-kappa B contains both the 50- and 65-kDa protein subunits, the latter ones being necessary to bind NF-kappa B to its cytoplasmic inhibitor in uninduced cells (Baeuerle and Baltimore, Genes Dev., 1989). In resting cells, this inducible form of NF-kappa B was indeed detectable in the cytosol after deoxycholate treatment. UV cross-linking experiments and gel retardation assays indicated that the inducible form of NF-kappa B is in a higher-order complex with other proteins.
Current protocols in molecular biology | 1993
Martine A. Collart; Salvatore Oliviero
This unit provides two protocols for extraction of RNA from yeast that differ primarily in the method for lysing the yeast cells. The first protocol isolates RNA directly from intact yeast cells by extraction with hot acidic phenol. This yields RNA that is relatively free of contaminating DNA, is convenient to perform with multiple samples, and gives little or no sample‐to‐sample variation. In contrast, an alternate protocol relies upon disruption of cells by vigorous mixing with glass beads and denaturing agents. Although this procedure results in efficient breaking of the cells, the product is associated with residual DNA, and the procedure itself is troublesome when one is working with multiple samples. A second alternate protocol describes the scaling up of the first two procedures to isolate enough total RNA for poly (A)+ RNA preparation.
Gene | 2003
Martine A. Collart
The Ccr4-Not complex is a global regulator of gene expression that is conserved from yeast to human. It is a large complex that in the yeast Saccharmyces cerevisiae exists in two prominent forms of 0.9-1.2 and 1.9-2 MDa, and consists of at least nine core subunits: the five Not proteins (Not1p to Not5p), Caf1p, Caf40p, Caf130p and Ccr4p. It was initially described to be a global regulator of transcription, based upon the observation that the levels of many transcripts were increased or decreased in mutants. However, the recent finding that Caf1p and Ccr4p encode the major yeast deadenylase has suggested that this complex may additionally play a role in RNA degradation. In this review, the events that led to the identification of the Ccr4-Not complex are described and the elements that clearly demonstrate that the Ccr4-Not complex regulates many different cellular functions are discussed, including RNA degradation and transcription initiation. The evidence points to a role for the Ccr4-Not complex as a regulatory platform that senses nutrient levels and stress.
The EMBO Journal | 2002
Thomas K. Albert; Hiroyuki Hanzawa; Yvonne I.A. Legtenberg; Marjolein J. de Ruwe; Fiona A.J. van den Heuvel; Martine A. Collart; Rolf Boelens; H. Th. Marc Timmers
The RING finger protein CNOT4 is a component of the CCR4–NOT complex. This complex is implicated in repression of RNA polymerase II transcription. Here we demonstrate that CNOT4 functions as a ubiquitin–protein ligase (E3). We show that the unique C4C4 RING domain of CNOT4 interacts with a subset of ubiquitin‐conjugating enzymes (E2s). Using NMR spectroscopy, we detail the interaction of CNOT4 with UbcH5B and characterize RING residues that are critical for this interaction. CNOT4 acts as a potent E3 ligase in vitro. Mutations that destabilize the E2–E3 interface abolish this activity. Based on these results, we present a model of how E3 ligase function within the CCR4–NOT complex relates to transcriptional regulation.
Molecular and Cellular Biology | 1999
Yongli Bai; Christopher Salvadore; Yueh-Chin Chiang; Martine A. Collart; Hai-Yan Liu; Clyde L. Denis
ABSTRACT The CCR4-NOT complex (1 mDa in size), consisting of the proteins CCR4, CAF1, and NOT1 to NOT5, regulates gene expression both positively and negatively and is distinct from other large transcriptional complexes in Saccharomyces cerevisiae such as SNF/SWI, TFIID, SAGA, and RNA polymerase II holoenzyme. The physical and genetic interactions between the components of the CCR4-NOT complex were investigated in order to gain insight into how this complex affects the expression of diverse genes and processes. The CAF1 protein was found to be absolutely required for CCR4 association with the NOT proteins, and CCR4 and CAF1, in turn, physically interacted with NOT1 through its central amino acid region from positions 667 to 1152. The NOT3, NOT4, and NOT5 proteins had no significant effect on the association of CCR4, CAF1, and NOT1 with each other. In contrast, the NOT2, NOT4, and NOT5 interacted with the C-terminal region (residues 1490 to 2108) of NOT1 in which NOT2 and NOT5 physically associated in the absence of CAF1, NOT3, and NOT4. These and other data indicate that the physical ordering of these proteins in the complex is CCR4-CAF1-NOT1-(NOT2, NOT5), with NOT4 and NOT3 more peripheral to NOT2 and NOT5. The physical separation of CCR4 and CAF1 from other components of the CCR4-NOT complex correlated with genetic analysis indicating partially separate functions for these two groups of proteins. ccr4or caf1 deletion suppressed the increased 3-aminotriazole resistance phenotype conferred by not mutations, resulted in opposite effects on gene expression as compared to severalnot mutations, and resulted in a number of synthetic phenotypes in combination with not mutations. These results define the CCR4-NOT complex as consisting of at least two physically and functionally separated groups of proteins.
Molecular and Cellular Biology | 1996
Martine A. Collart
Previous studies demonstrated that mutations in the Saccharomyces cerevisiae NOT genes increase transcription from TATA-less promoters. In this report, I show that in contrast, mutations in the yeast MOT1 gene decrease transcription from TATA-less promoters. I also demonstrate specific genetic interactions between the Not complex, Mot1p, and another global regulator of transcription in S. cerevisiae, Spt3p. Five distinct genetic interactions have been established. First, a null allele of SPT3, or a mutation in SPT15 that disrupts the interaction between Spt3p and TATA-binding protein (TBP), allele specifically suppressed the not1-2 mutation. Second, in contrast to not mutations, mutations in MOT1 decreased HIS3 and HIS4 TATA-less transcription. Third, not mutations suppressed toxicity due to overexpression of TBP in mot1-1 mutants. Finally, overexpression of SPT3 caused a weak Not- mutant phenotype in mot1-1 mutants. Collectively, these results suggest a novel type of transcriptional regulation whereby the distribution of limiting TBP (TFIID) on weak and strong TBP-binding core promoters is regulated: Mot1p releases stably bound TBP to allow its redistribution to low-affinity sites, and the Not proteins negatively regulate the activity of factors such as Spt3p that favor distribution of TBP to these low-affinity sites.
Molecular and Cellular Biology | 1991
Martine A. Collart; N. Tourkine; Dominique Belin; Pierre Vassalli; P. Jeanteur; J. M. Blanchard
Cultured mouse thioglycolate-elicited peritoneal macrophages exhibit a strong block to transcriptional elongation beyond the end of the c-fos gene first exon. This block is absent in freshly isolated peritoneal cells, appears slowly during culture, and does not require adherence of the cells. The extent of this block is largely responsible for the levels of c-fos mRNA in cultured macrophages, even after modulation by agents such as the tumor promoter phorbol myristate acetate and increased intracellular cyclic AMP, which also increase the activity of the c-fos promoter. When macrophages are cultured in the absence of mobilizable calcium, the block can no longer be relieved by any inducing agent. Conversely, upon calcium influxes, there is little alteration in the level of transcriptional initiation, but transcription proceeds efficiently through the entire c-fos locus. These results suggest the presence of an intragenic calcium-responsive element in the c-fos gene and illustrate its key role in the control of c-fos gene transcription.
The EMBO Journal | 1993
Martine A. Collart; Kevin Struhl
The yeast HIS3 promoter region contains two functionally distinct TATA elements, TC and TR, that are responsible respectively for initiation from the +1 and +13 sites. Both TC and TR support basal HIS3 transcription and require the TATA binding protein TFIID, but only TR responds to transcriptional activation by GCN4 and GAL4. By selecting for yeast strains that increase transcription by a GCN4 derivative with a defective activation domain, we have isolated a temperature‐sensitive mutation in CDC39, a previously defined gene implicated in cell‐cycle control and the pheromone response. This cdc39‐2 mutation causes increased basal transcription of many, but not all genes, as well as increased transcriptional activation by GCN4 and GAL4. Surprisingly, basal HIS3 transcription from the +1 initiation site is strongly increased, while initiation from the +13 site is barely affected. Thus, unlike acidic activator proteins that function through TR, CDC39 preferentially affects transcription mediated by TC. CDC39 is an essential gene that encodes a very large nuclear protein (2108 amino acids) containing two glutamine‐rich regions. These observations suggest that CDC39 negatively regulates transcription either by affecting the general RNA polymerase II machinery or by altering chromatin structure.
Journal of Biological Chemistry | 2006
Emilie Landrieux; Marc Feuermann; Andrija Finka; Nicole Paquet; Martine A. Collart
In this work, we determine that the Saccharomyces cerevisiae Ccr4-Not complex controls ubiquitination of the conserved ribosome-associated heterodimeric EGD (enhancer of Gal4p DNA binding) complex, which consists of the Egd1p and Egd2p subunits in yeast and is named NAC (nascent polypeptide-associated complex) in mammals. We show that the EGD complex subunits are ubiquitinated proteins, whose ubiquitination status is regulated during cell growth. Egd2p has a UBA domain that is not essential for interaction with Egd1p but is required for stability of Egd2p and Egd1p. Ubiquitination of Egd1p requires Not4p. Ubiquitination of Egd2p also requires Not4p, an intact Not4p RING finger domain, and all other subunits of the Ccr4-Not complex tested. In the absence of Not4p, Egd2p mislocalizes to punctuate structures. Finally, the EGD complex can be ubiquitinated in vitro by Not4p and Ubc4p, one of the E2 enzymes with which Not4p can interact. Taken together our results reveal that the EGD ribosome-associated complex is ubiquitinated in a regulated manner, and they show a new role for the Ccr4-Not complex in this ubiquitination.
Molecular and Cellular Biology | 2002
Cécile Deluen; Nicole James; Laurent Maillet; Miguel Molinete; Grégory Theiler; Marc Lemaire; Nicole Paquet; Martine A. Collart
ABSTRACT The Saccharomyces cerevisiae Ccr4-Not complex is a global regulator of transcription that is thought to regulate TATA binding protein (TBP) function at certain promoters specifically. In this paper, we show interactions between the essential domain of Not1p, which interacts with Not4p and Not5p, and the N-terminal domain of yTAF1. We isolated a temperature-sensitive nonsense allele of TAF1, taf1-4, which is synthetically lethal at the permissive temperature when combined with not4 and not5 mutants and which produces high levels of a C-terminally truncated yTAF1 derivative. Overexpression of C-terminally truncated yTAF1 is toxic in not4 or not5 mutants, whereas overexpression of full-length yTAF1 suppresses not4. Furthermore, mutations in the autoinhibitory N-terminal TAND domain of yTAF1 suppress not5, and the overexpression of similar mutants does not suppress not4. We find that, like Not5p, yTAF1 acts as a repressor of stress response element-dependent transcription. Finally, we have evidence for stress-regulated occupancy of promoter DNA by Not5p and for Not5p-dependent regulation of yTAF1 association with promoter DNA. Taken together with our finding that Not1p copurifies with glutathione S-transferase-yTaf1 in large complexes, these results provide the first molecular evidence that the Ccr4-Not complex might interact with yTAF1 to regulate its association at promoters, a function that might in turn regulate the autoinhibitory N-terminal domain of yTAF1.