Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martine Bassilana is active.

Publication


Featured researches published by Martine Bassilana.


Eukaryotic Cell | 2003

Cdc24, the GDP-GTP Exchange Factor for Cdc42, Is Required for Invasive Hyphal Growth of Candida albicans

Martine Bassilana; James Blyth; Robert A. Arkowitz

ABSTRACT Candida albicans, the most common human fungal pathogen, is particularly problematic for immunocompromised individuals. The reversible transition of this fungal pathogen to a filamentous form that invades host tissue is important for its virulence. Although different signaling pathways such as a mitogen-activated protein kinase and a protein kinase A cascade are critical for this morphological transition, the function of polarity establishment proteins in this process has not been determined. We examined the role of four different polarity establishment proteins in C. albicans invasive growth and virulence by using strains in which one copy of each gene was deleted and the other copy expressed behind the regulatable promoter MET3. Strikingly, mutants with ectopic expression of either the Rho G-protein Cdc42 or its exchange factor Cdc24 are unable to form invasive hyphal filaments and germ tubes in response to serum or elevated temperature and yet grow normally as a budding yeast. Furthermore, these mutants are avirulent in a mouse model for systemic infection. This function of the Cdc42 GTPase module is not simply a general feature of polarity establishment proteins. Mutants with ectopic expression of the SH3 domain containing protein Bem1 or the Ras-like G-protein Bud1 can grow in an invasive fashion and are virulent in mice, albeit with reduced efficiency. These results indicate that a specific regulation of Cdc24/Cdc42 activity is required for invasive hyphal growth and suggest that these proteins are required for pathogenicity of C. albicans.


Eukaryotic Cell | 2005

Regulation of the Cdc42/Cdc24 GTPase Module during Candida albicans Hyphal Growth

Martine Bassilana; Julie Hopkins; Robert A. Arkowitz

ABSTRACT The Rho G protein Cdc42 and its exchange factor Cdc24 are required for hyphal growth of the human fungal pathogen Candida albicans. Previously, we reported that strains ectopically expressing Cdc24 or Cdc42 are unable to form hyphae in response to serum. Here we investigated the role of these two proteins in hyphal growth, using quantitative real-time PCR to measure induction of hypha-specific genes together with time lapse microscopy. Expression of the hypha-specific genes examined depends on the cyclic AMP-dependent protein kinase A pathway culminating in the Efg1 and Tec1 transcription factors. We show that strains with reduced levels of CDC24 or CDC42 transcripts induce hypha-specific genes yet cannot maintain their expression in response to serum. Furthermore, in serum these mutants form elongated buds compared to the wild type and mutant budding cells, as observed by time lapse microscopy. Using Cdc24 fused to green fluorescent protein, we also show that Cdc24 is recruited to and persists at the germ tube tip during hyphal growth. Altogether these data demonstrate that the Cdc24/Cdc42 GTPase module is required for maintenance of hyphal growth. In addition, overexpression studies indicate that specific levels of Cdc24 and Cdc42 are important for invasive hyphal growth. In response to serum, CDC24 transcript levels increase transiently in a Tec1-dependent fashion, as do the G-protein RHO3 and the Rho1 GTPase activating protein BEM2 transcript levels. These results suggest that a positive feedback loop between Cdc24 and Tec1 contributes to an increase in active Cdc42 at the tip of the germ tube which is important for hypha formation.


Eukaryotic Cell | 2006

Rac1 and Cdc42 have different roles in Candida albicans development.

Martine Bassilana; Robert A. Arkowitz

ABSTRACT We investigated the role of the highly conserved G protein Rac1 in the opportunistic pathogen Candida albicans. We identified and disrupted RAC1 and show here that, in contrast to CDC42, it is not necessary for viability or serum-induced hyphal growth but is essential for filamentous growth when cells are embedded in a matrix. Rac1 is localized to the plasma membrane, yet its distribution is more homogenous than that of Cdc42, with no enrichment at the tips of either buds or hyphae. In addition, fluorescence recovery after photobleaching results indicate that Rac1 and Cdc42 have different dynamics at the membrane. Furthermore, overexpression of Rac1 does not complement Cdc42 function, and conversely, overexpression of Cdc42 does not complement Rac1 function. Thus, Rac1 and Cdc42, although highly similar to one another, have different roles in C. albicans development.


Eukaryotic Cell | 2011

Roles of Ras1 Membrane Localization during Candida albicans Hyphal Growth and Farnesol Response

Amy E. Piispanen; Ophelie Bonnefoi; Sarah Carden; Aurélie Deveau; Martine Bassilana; Deborah A. Hogan

ABSTRACT Many Ras GTPases localize to membranes via C-terminal farnesylation and palmitoylation, and localization regulates function. In Candida albicans, a fungal pathogen of humans, Ras1 links environmental cues to morphogenesis. Here, we report the localization and membrane dynamics of Ras1, and we characterize the roles of conserved C-terminal cysteine residues, C287 and C288, which are predicted sites of palmitoylation and farnesylation, respectively. GFP-Ras1 is localized uniformly to plasma membranes in both yeast and hyphae, yet Ras1 plasma membrane mobility was reduced in hyphae compared to that in yeast. Ras1-C288S was mislocalized to the cytoplasm and could not support hyphal development. Ras1-C287S was present primarily on endomembranes, and strains expressing ras1-C287S were delayed or defective in hyphal induction depending on the medium used. Cells bearing constitutively activated Ras1-C287S or Ras1-C288S, due to a G13V substitution, showed increased filamentation, suggesting that lipid modifications are differentially important for Ras1 activation and effector interactions. The C. albicans autoregulatory molecule, farnesol, inhibits Ras1 signaling through adenylate cyclase and bears structural similarities to the farnesyl molecule that modifies Ras1. At lower concentrations of farnesol, hyphal growth was inhibited but Ras1 plasma membrane association was not altered; higher concentrations of farnesol led to mislocalization of Ras1 and another G protein, Rac1. Furthermore, farnesol inhibited hyphal growth mediated by cytosolic Ras1-C288SG13V, suggesting that farnesol does not act through mechanisms that depend on Ras1 farnesylation. Our findings imply that Ras1 is farnesylated and palmitoylated, and that the Ras1 stimulation of adenylate cyclase-dependent phenotypes can occur in the absence of these lipid modifications.


Molecular Biology of the Cell | 2008

Activation of Rac1 by the guanine nucleotide exchange factor Dck1 is required for invasive filamentous growth in the pathogen Candida albicans.

Hannah Hope; Stéphanie Bogliolo; Robert A. Arkowitz; Martine Bassilana

Rho G proteins and their regulators are critical for cytoskeleton organization and cell morphology in all eukaryotes. In the opportunistic pathogen Candida albicans, the Rho G proteins Cdc42 and Rac1 are required for the switch from budding to filamentous growth in response to different stimuli. We show that Dck1, a protein with homology to the Ced-5, Dock180, myoblast city family of guanine nucleotide exchange factors, is necessary for filamentous growth in solid media, similar to Rac1. Our results indicate that Dck1 and Rac1 do not function in the same pathway as the transcription factor Czf1, which is also required for embedded filamentous growth. The conserved catalytic region of Dck1 is required for such filamentous growth, and in vitro this region directly binds a Rac1 mutant, which mimics the nucleotide-free state. In vivo overexpression of a constitutively active Rac1 mutant, but not wild-type Rac1, in a dck1 deletion mutant restores filamentous growth. These results indicate that the Dock180 guanine nucleotide exchange factor homologue, Dck1 activates Rac1 during invasive filamentous growth. We conclude that specific exchange factors, together with the G proteins they activate, are required for morphological changes in response to different stimuli.


Journal of Cell Biology | 2012

A steep phosphoinositide bis-phosphate gradient forms during fungal filamentous growth

Aurélia Vernay; Sébastien Schaub; Isabelle Guillas; Martine Bassilana; Robert A. Arkowitz

A gradient of PI(4,5)P2 formed by phospholipid synthesis, diffusion, and regulated turnover is crucial for filamentous growth.


Molecular Microbiology | 2010

The Candida albicans ELMO homologue functions together with Rac1 and Dck1, upstream of the MAP Kinase Cek1, in invasive filamentous growth

Hannah Hope; Christian Schmauch; Robert A. Arkowitz; Martine Bassilana

Regulation of Rho G‐proteins is critical for cytoskeletal organization and cell morphology in all eukaryotes. In the human opportunistic pathogen Candida albicans, Rac1 and its activator Dck1, a member of the CED5, Dock180, myoblast city family of guanine nucleotide exchange factors, are required for the budding to filamentous transition during invasive growth. We show that Lmo1, a protein with similarity to human ELMO1, is necessary for invasive filamentous growth, similar to Rac1 and Dck1. Furthermore, Rac1, Dck1 and Lmo1 are required for cell wall integrity, as the deletion mutants are sensitive to cell wall perturbing agents, but not to oxidative or osmotic stresses. The region of Lmo1 encompassing the ELMO and PH‐like domains is sufficient for its function. Both Rac1 and Dck1 can bind Lmo1. Overexpression of a number of protein kinases in the rac1, dck1 and lmo1 deletion mutants indicates that Rac1, Dck1 and Lmo1 function upstream of the mitogen‐activated protein kinases Cek1 and Mkc1, linking invasive filamentous growth to cell wall integrity. We conclude that the requirement of ELMO/CED12 family members for Rac1 function is conserved from fungi to humans.


Biochemical and Biophysical Research Communications | 1985

Effect of membrane potential on the kinetic parameters of the Na+ or H+ melibiose symport in Escherichia coli membrane vesicles

Martine Bassilana; Evelyne Damiano-Forano; Gérard Leblanc

Comparison of the transport properties of the melibiose permease of E. coli acting as a H+-symport or a Na+-symport has been performed by measuring initial rates of [3H]-melibiose transport or its accumulation in isolated membrane vesicles. The results show strikingly that although the membrane potential primarily drives melibiose accumulation by both types of symport, it selectively affects the apparent affinity constant Kt of the H+-melibiose symport while it specifically changes the maximal rate of transport (Vmax) of the Na+-melibiose symport. It is suggested that modification(s) of some partial reaction constants of a given transport cycle might lead to important changes in the kinetic properties of this transport system.


Seminars in Cell & Developmental Biology | 2011

Polarized growth in fungi: symmetry breaking and hyphal formation.

Robert A. Arkowitz; Martine Bassilana

Cell shape is a critical determinant for function. The bakers yeast Saccharomyces cerevisiae changes shape in response to its environment, growing by budding in rich nutrients, forming invasive pseudohyphal filaments in nutrient poor conditions and pear shaped shmoos for growth towards a partner during mating. The human opportunistic pathogen Candida albicans can switch from budding to hyphal growth, in response to numerous environmental stimuli to colonize and invade its host. Hyphal growth, typical of filamentous fungi, is not observed in S. cerevisiae. A number of internal cues regulate when and where yeast cells break symmetry leading to polarized growth and ultimately distinct cell shapes. This review discusses how cells break symmetry using the yeast S. cerevisiae paradigm and how polarized growth is initiated and maintained to result in dramatic morphological changes during C. albicans hyphal growth.


Molecular Microbiology | 2013

Spatiotemporal regulation of Rho1 and Cdc42 activity during Candida albicans filamentous growth.

Vincent Corvest; Stéphanie Bogliolo; Peter Follette; Robert A. Arkowitz; Martine Bassilana

Rho G‐proteins are critical for polarized growth, yet little is known about the dynamics of their activation during fungal filamentous growth. We first investigated the roles of Rho1 and Rho2 during Candida albicans filamentous growth. Our results show that Rho1 is required for invasive filamentous growth and that Rho2 is not functionally redundant with Rho1. Using fluorescent reporters, we examined the dynamics of the active form of Rho1 and Cdc42 during initiation and maintenance of hyphal growth. Quantitative analyses indicated that the distribution, but not the level, of these active G‐proteins is altered during initial polarization upon germ tube emergence. A comparison of the dynamics of these active G‐proteins during budding and hyphal growth indicates that a higher concentration of active Cdc42 was recruited to the germ tube tip than to the bud tip. During hyphal elongation, active Cdc42 remained tightly restricted to the hyphal tip, whereas active Rho1 was broadly associated with the apex and subsequently recruited to the cell division site. Furthermore, our data suggest that phosphoinositide‐bis‐phosphates are critical to stabilize active Rho1 at the growth site. Together, our results point towards different regulation of Cdc42 and Rho1 activity during initiation and maintenance of filamentous growth.

Collaboration


Dive into the Martine Bassilana's collaboration.

Top Co-Authors

Avatar

Thierry Pourcher

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Gérard Leblanc

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Peter Follette

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah Hope

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ophelie Bonnefoi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stéphanie Bogliolo

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Thierry Pourcher

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Agnese Seminara

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge