Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martine Cossette is active.

Publication


Featured researches published by Martine Cossette.


Neuroscience Research | 2000

Characterization of the subventricular zone of the adult human brain: evidence for the involvement of Bcl-2

Patrick J. Bernier; Jonathan Vinet; Martine Cossette; André Parent

The subventricular zone (SVZ) is an embryonic remnant that persists and remains mitotically active throughout adulthood. The rodent SVZ harbors neuronal precursors, principally in its anterior part, and generates neuroblasts that migrate tangentially into the olfactory bulb, thus forming the so-called rostral migratory stream. This study aimed at characterizing the SVZ in the human brain. Antibodies raised against the widely used SVZ molecular markers nestin, glial fibrillary acidic protein, beta-tubulin-III and polysialylated neural cell adhesion molecule, have allowed us to characterize in detail a zone similar to the rodent SVZ in humans. Virtually all portions of the lateral ventricle, as well as the ventral (hypothalamic) sector of the third ventricle, displayed immunoreactivity for most of the molecular markers. The midline region of the septum (septal recess) and the ventral portion of the SVZ displayed a particularly intense immunostaining for all SVZ markers. These two regions may represent zones of adult neurogenesis that are unique to primates. Furthermore, the anti-apoptotic protein Bcl-2 was found to be actively synthesized and co-expressed with all the other markers throughout the entire SVZ. This study reveals that a well-developed SVZ exists in the adult human brain and suggests that Bcl-2 might play an important role in the functional organization of such a system.


Neuroscience Research | 1999

EXTRASTRIATAL DOPAMINERGIC INNERVATION OF HUMAN BASAL GANGLIA

Martine Cossette; Martin Lévesque; André Parent

A tyrosine-hydroxylase immunohistochemical analysis of the brains of normal human individuals has revealed nigrostriatal axons providing collaterals that arborize in the pallidum and subthalamic nucleus. These thin and varicose collaterals emerge from thick and smooth axons that course backward along the main output pathways of the basal ganglia, including the ansa lenticularis, the lenticular fasciculus and Wilsons pencils. Many of these fibers run within pallidal medullary laminae before reaching the putamen, whereas others climb along the reticular thalamic nucleus to reach the caudate nucleus. This extrastriatal innervation, which allows nigral dopaminergic neurons to directly affect the pallidum and subthalamic nucleus, may play a crucial role in the functional organization of human basal ganglia, in both health and disease.


Journal of Chemical Neuroanatomy | 2000

Dopaminergic innervation of human basal ganglia.

Lucı́a Prensa; Martine Cossette; André Parent

This paper summarises the results of some of our recent tyrosine hydroxylase (TH) immunohistochemical studies of the dopaminergic innervation of the human basal ganglia. It also reports new findings on the presence of TH-immunoreactive (ir) neurons in the striatum. Our data show the existence of nigrostriatal TH-ir axons that provide collaterals arborizing in the globus pallidus and subthalamic nucleus. These thin and varicose collaterals emerge from thick and smooth axons that course along the main output pathways of the basal ganglia, including the ansa lenticularis, the lenticular fasciculus and Wilsons pencils. We postulate that this extrastriatal innervation, which allows nigral dopaminergic neurons to directly affect the pallidum and subthalamic nucleus, plays a critical role in the functional organisation of human basal ganglia. The TH-ir fibres that reach the striatum arborize according to a highly heterogeneous pattern. At rostral striatal levels, numerous small TH-poor zones embedded in a TH-rich matrix correspond to calbindin-poor striosomes and calbindin-rich extrastriosomal matrix, respectively. At caudal striatal levels, in contrast, striosomes display a TH immunostaining that is more intense than that of the matrix. A significant number of small, oval, aspiny TH-ir neurons scattered throughout the rostrocaudal extent of the caudate nucleus and putamen, together with a few larger, multipolar, spiny TH-ir neurons lying principally within the ventral portion of the putamen, were disclosed in human. This potential source of intrinsic striatal dopamine might play an important role in the functional organisation of the human striatum, particularly in case of Parkinsons disease.


Neuroscience Letters | 2002

Proliferating cells can differentiate into neurons in the striatum of normal adult monkey

Andréanne Bédard; Martine Cossette; Martin Lévesque; André Parent

In this study we used bromodeoxyuridine (BrdU), a thymidine analogue that is incorporated into the DNA of mitotic cells, to study the cytogenesis status of the striatum in normal, adult, squirrel monkeys (Saimiri sciureus). Three weeks following BrdU injection, numerous BrdU-labeled (+) cells were encountered within both the dorsal and the ventral striatum, including the nucleus accumbens. Their number ranged from 5 to 50 per 40 microm-thick section. These BrdU+ cells were more abundant medially than laterally and displayed a rostrocaudal-decreasing gradient in the caudate nucleus and putamen. Double-immunofluorescence confocal studies have revealed that about 5-10% of the BrdU+ striatal cells expressed the neuronal nuclear antigen (NeuN), a marker for mature neurons. These findings suggest that new neurons are produced throughout adult life in the striatum of normal, adult primates. This result raises the possibility of experimentally enhancing the recruitment of these newborn neurons as a means to alleviate the symptoms of neurodegenerative diseases that affect the striatum.


Journal of Chemical Neuroanatomy | 2003

Novel aspects of the chemical anatomy of the striatum and its efferents projections.

Martin Lévesque; Andréanne Bédard; Martine Cossette; André Parent

This paper summarizes the results of some of our previous neuroanatomical and immunohistochemical studies on the organization of the striatum and its efferent projections in rodents, monkeys and humans. It also reports recent functional calcium-imaging data obtained in rat brain slices, as well as developmental results gathered with bromodeoxyuridine (BrdU) in monkeys. On one hand, single-axon tracing studies in rats and monkeys have revealed that the majority of striatofugal axon arborizes within most striatal target structures. In humans, SP-positive fibers were found to arborize in the two segments of the globus pallidus, where they were closely apposed to pallidal neurons that expressed the neurokinin-1 receptor (NK-1r). In agreement with such findings, calcium-imaging studies in rats have revealed that pallidal and nigral neurons are both responsive to SP. These findings suggest that the striatofugal projection system is much more widely distributed than previously thought and exerted a multifaceted effect upon its target sites. On the other hand, immunostaining studies in humans have shown the presence of several types of putative dopaminergic neurons intrinsic to the striatum. Furthermore, BrdU labeling experiments in monkeys have demonstrated that new neurons are generated throughout adult life in the striatum of normal monkeys and that their number can be markedly increased by the administration of neuronal growth factors. These findings open new therapeutic avenues for the treatment of neurodegenerative disorders that specifically affect the striatum.


Journal of Chemical Neuroanatomy | 2005

Morphology and distribution of dopaminergic neurons intrinsic to the human striatum.

Martine Cossette; Frédéric Lecomte; André Parent

The putative dopaminergic (DA) neurons intrinsic to the human striatum were studied by applying immunofluorescence and quantitative methods to postmortem tissue from seven normal individuals. Stringent morphological and chemical criteria were used to identify striatal DA neurons, including immunostaining for tyrosine hydroxylase, DA transporter and neuronal nuclear protein. The DA neurons were scattered throughout the striatum, but abounded particularly in its ventral portion. Frequency distribution of surface areas of DA cell bodies reveals that the most frequent DA neurons (x =58.0%, S.D.=12.8%) had a medium-sized (approximately 200+/-15 microm2) perikaryon with 3-5 varicose dendrites, whereas others (x =35.5%, S.D.=14.0%) had a smaller (approximately 140+/-15 microm2) perikaryon with 3-4 varicose dendrites. There was a small number (x =6.5%, S.D.=8.5%) of larger DA neurons (209-584 microm2) with spiny dendrites and a few TH-immunoreactive cells displaying mixed neuron-glia morphology. Despite significant inter-individual variations in neuron density, the human striatum (mean volume of 8.76 cm3) harbored a mean of 331.9 DA neurons (S.D.=199.2). A prolific zone, containing about 3000 cells, occurred in the ventral striatum in two brains. The addition of these cells would increase by about 10 times the total number of striatal DA neurons, which should not be confounded with segments of nigrostriatal DA fibers that displayed large (8-12 microm) varicosities and looked like small bipolar neurons. The function of striatal DA neurons is unknown but the fact that their number increases markedly following lesion of nigral DA input or administration of various growth factors, opens up new therapeutic avenues for treatment of Parkinsons disease.


European Journal of Neuroscience | 2004

Tyrosine hydroxylase‐positive neurons intrinsic to the human striatum express the transcription factor Nurr1

Martine Cossette; André Parent; Daniel Lévesque

The putative dopaminergic (DA) neurons intrinsic to human striatum were studied to determine their similarity with DA neurons of the substantia nigra pars compacta (SNpc). The comparison was based on morphological features and on the presence or absence of Nurr1, an orphan receptor of the nuclear receptor family that is essential for the expression of DA phenotype by developing SNpc neurons. Immunohistochemistry for the neuronal nuclear protein (NeuN; a neuronal marker) and in situ hybridization for tyrosine hydroxylase (TH) and/or Nurr1 were applied to post‐mortem tissue obtained from seven normal individuals. On one hand, the TH‐positive multipolar neurons in the human striatum, which were subdivided into three groups according to their size and pattern of dendritic arborization, were found to be morphologically similar to TH‐positive neurons of the SNpc. The distribution frequency of striatal TH‐positive neurons, according to their diameter, closely matches the frequency observed for multipolar TH‐positive cells in the SNpc. On the other hand, the proportion of neurons expressing Nurr1 and TH mRNA transcripts on single striatal section was similar to the proportion of TH‐immunoreactive neurons observed on adjacent sections. More importantly, in each striatum analysed, virtually all cells that stained for TH also expressed NeuN and Nurr1. This study provides novel data that confirm the existence of DA neurons intrinsic to the human striatum. It also provides the first evidence for the existence of striking morphological and chemical similarities between the DA neurons present at striatal level and those that populate the SNpc.


Parkinsonism & Related Disorders | 2005

Neurochemical characterization of dopaminergic neurons in human striatum.

Martine Cossette; Daniel Lévesque; André Parent


Annals of the New York Academy of Sciences | 2006

Dopaminergic Neurons in Human Striatum and Neurogenesis in Adult Monkey Striatum

Martine Cossette; Andréanne Bédard; André Parent


Advances in Neurology | 2001

Extrastriatal dopamine and Parkinson's disease.

André Parent; Martine Cossette

Collaboration


Dive into the Martine Cossette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge