Martine Dieuaide-Noubhani
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martine Dieuaide-Noubhani.
Plant Physiology | 2005
Ana Paula Alonso; Hélène Vigeolas; Philippe Raymond; Dominique Rolin; Martine Dieuaide-Noubhani
Substrate (futile) cycling involving carbohydrate turnover has been widely reported in plant tissues, although its extent, mechanisms, and functions are not well known. In this study, two complementary approaches, short and steady-state labeling experiments, were used to analyze glucose metabolism in maize (Zea mays) root tips. Unidirectional rates of synthesis for storage compounds (starch, Suc, and cell wall polysaccharides) were determined by short labeling experiments using [U-14C]glucose and compared with net synthesis fluxes to determine the rate of glucose production from these storage compounds. Steady-state labeling with [1-13C]glucose and [U-13C]glucose showed that the redistribution of label between carbon C-1 and C-6 in glucose is close to that in cytosolic hexose-P. These results indicate a high resynthesis flux of glucose from hexose-P that is not accounted for by glucose recycling from storage compounds, thus suggesting the occurrence of a direct glucose-P-to-glucose conversion. An enzyme assay confirmed the presence of substantial glucose-6-phosphatase activity in maize root tips. This new glucose-P-to-glucose cycle was shown to consume around 40% of the ATP generated in the cell, whereas Suc cycling consumes at most 3% to 6% of the ATP produced. The rate of glucose-P cycling differs by a factor of 3 between a maize W22 line and the hybrid maize cv Dea, and is significantly decreased by a carbohydrate starvation pretreatment.
Plant Physiology | 1997
Martine Dieuaide-Noubhani; Paul Canioni; Philippe Raymond
Excised maize (Zea mays L.) root tips were used to study the early metabolic effects of glucose (Glc) starvation. Root tips were prelabeled with [1-13C]Glc so that carbohydrates and metabolic intermediates were close to steady-state labeling, but lipids and proteins were scarcely labeled. They were then incubated in a sugar-deprived medium for carbon starvation. Changes in the level of soluble sugars, the respiratory quotient, and the 13C enrichment of intermediates, as measured by 13C and 1H nuclear magnetic resonance, were studied to detect changes in carbon fluxes through glycolysis and the tricarboxylic acid cycle. Labeling of glutamate carbons revealed two major changes in carbon input into the tricarboxylic acid cycle: (a) the phosphoenolpyruvate carboxylase flux stopped early after the start of Glc starvation, and (b) the contribution of glycolysis as the source of acetyl-coenzyme A for respiration decreased progressively, indicating an increasing contribution of the catabolism of protein amino acids, fatty acids, or both. The enrichment of glutamate carbons gave no evidence for proteolysis in the early steps of starvation, indicating that the catabolism of proteins was delayed compared with that of fatty acids. Labeling of carbohydrates showed that sucrose turnover continues during sugar starvation, but gave no indication for any significant flux through gluconeogenesis.
The Plant Cell | 2014
Bertrand Beauvoit; Sophie Colombié; Antoine Monier; Marie-Hélène Andrieu; Benoît Biais; Camille Bénard; Catherine Chéniclet; Martine Dieuaide-Noubhani; Christine Nazaret; Jean-Pierre Mazat; Yves Gibon
A kinetic model combining enzyme activities and subcellular compartmentation was built to analyze the storage and interconversion of sugars in developing tomato fruit. This work shows that tonoplast carriers, sucrose hydrolysis, and accumulation of organic acids are major contributors to the vacuole expansion and the metabolic reprogramming that occur during early development. A kinetic model combining enzyme activity measurements and subcellular compartmentation was parameterized to fit the sucrose, hexose, and glucose-6-P contents of pericarp throughout tomato (Solanum lycopersicum) fruit development. The model was further validated using independent data obtained from domesticated and wild tomato species and on transgenic lines. A hierarchical clustering analysis of the calculated fluxes and enzyme capacities together revealed stage-dependent features. Cell division was characterized by a high sucrolytic activity of the vacuole, whereas sucrose cleavage during expansion was sustained by both sucrose synthase and neutral invertase, associated with minimal futile cycling. Most importantly, a tight correlation between flux rate and enzyme capacity was found for fructokinase and PPi-dependent phosphofructokinase during cell division and for sucrose synthase, UDP-glucopyrophosphorylase, and phosphoglucomutase during expansion, thus suggesting an adaptation of enzyme abundance to metabolic needs. In contrast, for most enzymes, flux rates varied irrespectively of enzyme capacities, and most enzymes functioned at <5% of their maximal catalytic capacity. One of the major findings with the model was the high accumulation of soluble sugars within the vacuole together with organic acids, thus enabling the osmotic-driven vacuole expansion that was found during cell division.
BMC Systems Biology | 2011
Marie Beurton-Aimar; Bertrand Beauvoit; Antoine Monier; François Vallée; Martine Dieuaide-Noubhani; Sophie Colombié
Background13C metabolic flux analysis is one of the pertinent ways to compare two or more physiological states. From a more theoretical standpoint, the structural properties of metabolic networks can be analysed to explore feasible metabolic behaviours and to define the boundaries of steady state flux distributions. Elementary flux mode analysis is one of the most efficient methods for performing this analysis. In this context, recent approaches have tended to compare experimental flux measurements with topological network analysis.ResultsMetabolic networks describing the main pathways of central carbon metabolism were set up for a bacteria species (Corynebacterium glutamicum) and a plant species (Brassica napus) for which experimental flux maps were available. The structural properties of each network were then studied using the concept of elementary flux modes. To do this, coefficients of flux efficiency were calculated for each reaction within the networks by using selected sets of elementary flux modes. Then the relative differences - reflecting the change of substrate i.e. a sugar source for C. glutamicum and a nitrogen source for B. napus - of both flux efficiency and flux measured experimentally were compared. For both organisms, there is a clear relationship between these parameters, thus indicating that the network structure described by the elementary flux modes had captured a significant part of the metabolic activity in both biological systems. In B. napus, the extension of the elementary flux mode analysis to an enlarged metabolic network still resulted in a clear relationship between the change in the coefficients and that of the measured fluxes. Nevertheless, the limitations of the method to fit some particular fluxes are discussed.ConclusionThis consistency between EFM analysis and experimental flux measurements, validated on two metabolic systems allows us to conclude that elementary flux mode analysis could be a useful tool to complement 13C metabolic flux analysis, by allowing the prediction of changes in internal fluxes before carbon labelling experiments.
EXS | 2007
Martine Dieuaide-Noubhani; Ana-Paula Alonso; Dominique Rolin; Wolfgang Eisenreich; Philippe Raymond
Isotopic tracers are used to both trace metabolic pathways and quantify fluxes through these pathways. The use of different labeling methods recently led to profound changes in our views of plant metabolism. Examples are taken from primary metabolism, with sugar interconversions, carbon partitioning between glycolysis and the pentose phosphate pathway, or metabolite inputs into the tricarboxylic acid (TCA) cycle, as well as from secondary metabolism with the relative contribution of the plastidial and cytosolic pathways to the biosynthesis of terpenoids. While labeling methods are often distinguished according to the instruments used for label detection, emphasis is put here on labeling duration. Short time labeling is adequate to study limited areas of the metabolic network. Long-term labeling, when designed to obtain metabolic and isotopic steady-state, allows to calculate various fluxes in large areas ofcentral metabolism. After longer labeling periods, large amounts of label accumulate in structural or storage compounds: their detailed study through the retrobiosynthetic method gives access to the biosynthetic pathways of otherwise undetectable precursors. This chapter presents the power and limits of the different methods, and illustrates how they can be associated with each other and with other methods of cell biology, to provide the information needed for a rational approach of metabolic engineering.
Methods of Molecular Biology | 2014
Martine Dieuaide-Noubhani; Ana Paula Alonso
This volume compiles a series of chapters that cover the major aspects of plant metabolic flux analysis, such as but not limited to labeling of plant material, acquisition of labeling data, mathematical modeling of metabolic network at the cell, tissue, and plant level. A short revue, including methodological points and applications of flux analysis to plants, is presented in this introductory chapter.
New Phytologist | 2017
Sophie Colombié; Bertrand Beauvoit; Christine Nazaret; Camille Bénard; Gilles Vercambre; Sophie Le Gall; Benoit Biais; Cécile Cabasson; Mickaël Maucourt; Stéphane Bernillon; Annick Moing; Martine Dieuaide-Noubhani; Jean-Pierre Mazat; Yves Gibon
Summary Tomato is a model organism to study the development of fleshy fruit including ripening initiation. Unfortunately, few studies deal with the brief phase of accelerated ripening associated with the respiration climacteric because of practical problems involved in measuring fruit respiration. Because constraint‐based modelling allows predicting accurate metabolic fluxes, we investigated the respiration and energy dissipation of fruit pericarp at the breaker stage using a detailed stoichiometric model of the respiratory pathway, including alternative oxidase and uncoupling proteins. Assuming steady‐state, a metabolic dataset was transformed into constraints to solve the model on a daily basis throughout tomato fruit development. We detected a peak of CO 2 released and an excess of energy dissipated at 40 d post anthesis (DPA) just before the onset of ripening coinciding with the respiration climacteric. We demonstrated the unbalanced carbon allocation with the sharp slowdown of accumulation (for syntheses and storage) and the beginning of the degradation of starch and cell wall polysaccharides. Experiments with fruits harvested from plants cultivated under stress conditions confirmed the concept. We conclude that modelling with an accurate metabolic dataset is an efficient tool to bypass the difficulty of measuring fruit respiration and to elucidate the underlying mechanisms of ripening.
Archive | 2014
Martine Dieuaide-Noubhani; Ana Paula Alonso
This volume compiles a series of chapters that cover the major aspects of plant metabolic flux analysis, such as but not limited to labeling of plant material, acquisition of labeling data, mathematical modeling of metabolic network at the cell, tissue, and plant level. A short revue, including methodological points and applications of flux analysis to plants, is presented in this introductory chapter.
Frontiers in Plant Science | 2018
Eric Soubeyrand; Sophie Colombié; Bertrand Beauvoit; Zhanwu Dai; Stéphanie Cluzet; Ghislaine Hilbert; Christel Renaud; Lilly Maneta-Peyret; Martine Dieuaide-Noubhani; Jean-Michel Mérillon; Yves Gibon; Serge Delrot; Eric Gomès
Anthocyanin biosynthesis is regulated by environmental factors (such as light, temperature, and water availability) and nutrient status (such as carbon, nitrogen, and phosphate nutrition). Previous reports show that low nitrogen availability strongly enhances anthocyanin accumulation in non carbon-limited plant organs or cell suspensions. It has been hypothesized that high carbon-to-nitrogen ratio would lead to an energy excess in plant cells, and that an increase in flavonoid pathway metabolic fluxes would act as an “energy escape valve,” helping plant cells to cope with energy and carbon excess. However, this hypothesis has never been tested directly. To this end, we used the grapevine Vitis vinifera L. cultivar Gamay Teinturier (syn. Gamay Freaux or Freaux Tintorier, VIVC #4382) cell suspension line as a model system to study the regulation of anthocyanin accumulation in response to nitrogen supply. The cells were sub-cultured in the presence of either control (25 mM) or low (5 mM) nitrate concentration. Targeted metabolomics and enzyme activity determinations were used to parametrize a constraint-based model describing both the central carbon and nitrogen metabolisms and the flavonoid (phenylpropanoid) pathway connected by the energy (ATP) and reducing power equivalents (NADPH and NADH) cofactors. The flux analysis (2 flux maps generated, for control and low nitrogen in culture medium) clearly showed that in low nitrogen-fed cells all the metabolic fluxes of central metabolism were decreased, whereas fluxes that consume energy and reducing power, were either increased (upper part of glycolysis, shikimate, and flavonoid pathway) or maintained (pentose phosphate pathway). Also, fluxes of flavanone 3β-hydroxylase, flavonol synthase, and anthocyanidin synthase were strongly increased, advocating for a regulation of the flavonoid pathway by alpha-ketoglutarate levels. These results strongly support the hypothesis of anthocyanin biosynthesis acting as an energy escape valve in plant cells, and they open new possibilities to manipulate flavonoid production in plant cells. They do not, however, support a role of anthocyanins as an effective mechanism for coping with carbon excess in high carbon to nitrogen ratio situations in grape cells. Instead, constraint-based modeling output and biomass analysis indicate that carbon excess is dealt with by vacuolar storage of soluble sugars.
Archive | 2017
Martine Dieuaide-Noubhani; Dominique Rolin
Mitochondrial respiration requires redox power that is mainly provided by the tricarboxylic acid (TCA) cycle in heterotrophic tissues. Glycolysis is commonly assumed to be the major pathway for carbon replenishment of the TCA cycle in most plant cells. However, the TCA cycle also provides precursors for amino acids and organic acids synthesis, a process that requires 4- or 5-C molecules supplied by anaplerotic pathways. The TCA cycle is thus involved in both anabolism and catabolism. Despite the good knowledge of enzymes and pathways involved in these processes, the regulation of carbon partitioning between catabolism and anabolism remains poorly understood. Metabolic flux analysis (MFA) aims at quantifying fluxes in metabolic networks and provides new insights for the study of the TCA cycle and associated pathways. This chapter presents briefly the principles of MFA, and describes how 14C-tracing evolved to 13C-MFA, and more recently to 13C-INST-MFA. Such analyses have provided insights about the origin of carbon atoms entering the TCA cycle and the partitioning between respiration and biosyntheses.