Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martine Doco-Fenzy is active.

Publication


Featured researches published by Martine Doco-Fenzy.


Journal of Medical Genetics | 2014

Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing

Claire Redin; Bénédicte Gérard; Julia Lauer; Yvan Herenger; Jean Muller; Angélique Quartier; Alice Masurel-Paulet; Marjolaine Willems; Gaetan Lesca; Salima El-Chehadeh; Stéphanie Le Gras; Serge Vicaire; Muriel Philipps; Michael Dumas; Véronique Geoffroy; Claire Feger; Nicolas Haumesser; Yves Alembik; Magalie Barth; Dominique Bonneau; Estelle Colin; Hélène Dollfus; Bérénice Doray; Marie-Ange Delrue; Valérie Drouin-Garraud; Elisabeth Flori; Mélanie Fradin; Christine Francannet; Alice Goldenberg; Serge Lumbroso

Background Intellectual disability (ID) is characterised by an extreme genetic heterogeneity. Several hundred genes have been associated to monogenic forms of ID, considerably complicating molecular diagnostics. Trio-exome sequencing was recently proposed as a diagnostic approach, yet remains costly for a general implementation. Methods We report the alternative strategy of targeted high-throughput sequencing of 217 genes in which mutations had been reported in patients with ID or autism as the major clinical concern. We analysed 106 patients with ID of unknown aetiology following array-CGH analysis and other genetic investigations. Ninety per cent of these patients were males, and 75% sporadic cases. Results We identified 26 causative mutations: 16 in X-linked genes (ATRX, CUL4B, DMD, FMR1, HCFC1, IL1RAPL1, IQSEC2, KDM5C, MAOA, MECP2, SLC9A6, SLC16A2, PHF8) and 10 de novo in autosomal-dominant genes (DYRK1A, GRIN1, MED13L, TCF4, RAI1, SHANK3, SLC2A1, SYNGAP1). We also detected four possibly causative mutations (eg, in NLGN3) requiring further investigations. We present detailed reasoning for assigning causality for each mutation, and associated patients’ clinical information. Some genes were hit more than once in our cohort, suggesting they correspond to more frequent ID-associated conditions (KDM5C, MECP2, DYRK1A, TCF4). We highlight some unexpected genotype to phenotype correlations, with causative mutations being identified in genes associated to defined syndromes in patients deviating from the classic phenotype (DMD, TCF4, MECP2). We also bring additional supportive (HCFC1, MED13L) or unsupportive (SHROOM4, SRPX2) evidences for the implication of previous candidate genes or mutations in cognitive disorders. Conclusions With a diagnostic yield of 25% targeted sequencing appears relevant as a first intention test for the diagnosis of ID, but importantly will also contribute to a better understanding regarding the specific contribution of the many genes implicated in ID and autism.


Journal of Medical Genetics | 2009

Microdeletions including YWHAE in the Miller-Dieker syndrome region on chromosome 17p13.3 result in facial dysmorphisms, growth restriction, and cognitive impairment

S C Sreenath Nagamani; Feng Zhang; Oleg A. Shchelochkov; Weimin Bi; Zhishuo Ou; Fernando Scaglia; Frank J. Probst; Marwan Shinawi; Christine M. Eng; Jill V. Hunter; Steven Sparagana; E Lagoe; Chin-To Fong; M Pearson; Martine Doco-Fenzy; E Landais; M Mozelle; A. C. Chinault; Ankita Patel; Carlos A. Bacino; Trilochan Sahoo; Sung-Hae Kang; S.W. Cheung; James R. Lupski; Pawel Stankiewicz

Background: Deletions in the 17p13.3 region are associated with abnormal neuronal migration. Point mutations or deletion copy number variants of the PAFAH1B1 gene in this genomic region cause lissencephaly, whereas extended deletions involving both PAFAH1B1 and YWHAE result in Miller–Dieker syndrome characterised by facial dysmorphisms and a more severe grade of lissencephaly. The phenotypic consequences of YWHAE deletion without deletion of PAFAH1B1 have not been studied systematically. Methods: We performed a detailed clinical and molecular characterization of five patients with deletions involving YWHAE but not PAFAH1B1, two with deletion including PAFAH1B1 but not YWHAE, and one with deletion of YWHAE and mosaic for deletion of PAFAH1B1. Results: Three deletions were terminal whereas five were interstitial. Patients with deletions including YWHAE but not PAFAH1B1 presented with significant growth restriction, cognitive impairment, shared craniofacial features, and variable structural abnormalities of the brain. Growth restriction was not observed in one patient with deletion of YWHAE and TUSC5, implying that other genes in the region may have a role in regulation of growth with CRK being the most likely candidate. Using array based comparative genomic hybridisation and long range polymerase chain reaction, we have delineated the breakpoints of these nonrecurrent deletions and show that the interstitial genomic rearrangements are likely generated by diverse mechanisms, including the recently described Fork Stalling and Template Switching (FoSTeS)/Microhomology Mediated Break Induced Replication (MMBIR). Conclusions: Microdeletions of chromosome 17p13.3 involving YWHAE present with growth restriction, craniofacial dysmorphisms, structural abnormalities of brain and cognitive impairment. The interstitial deletions are mediated by diverse molecular mechanisms.


European Journal of Human Genetics | 2013

The 2q37-deletion syndrome: an update of the clinical spectrum including overweight, brachydactyly and behavioural features in 14 new patients.

Camille Leroy; Emilie Landais; Sylvain Briault; Albert David; Olivier Tassy; Nicolas Gruchy; Bruno Delobel; Marie-José Grégoire; Bruno Leheup; Laurence Taine; Didier Lacombe; Marie-Ange Delrue; Annick Toutain; Agathe Paubel; Francine Mugneret; Christel Thauvin-Robinet; Stéphanie Arpin; Cédric Le Caignec; Philippe Jonveaux; Mylène Beri; Nathalie Leporrier; Jacques Motte; Caroline Fiquet; Olivier Brichet; Monique Mozelle-Nivoix; Pascal Sabouraud; Nathalie Golovkine; Nathalie Bednarek; Dominique Gaillard; Martine Doco-Fenzy

The 2q37 locus is one of the most commonly deleted subtelomeric regions. Such a deletion has been identified in >100 patients by telomeric fluorescence in situ hybridization (FISH) analysis and, less frequently, by array-based comparative genomic hybridization (array-CGH). A recognizable ‘2q37-deletion syndrome’ or Albright’s hereditary osteodystrophy-like syndrome has been previously described. To better map the deletion and further refine this deletional syndrome, we formed a collaboration with the Association of French Language Cytogeneticists to collect 14 new intellectually deficient patients with a distal or interstitial 2q37 deletion characterized by FISH and array-CGH. Patients exhibited facial dysmorphism (13/14) and brachydactyly (10/14), associated with behavioural problems, autism or autism spectrum disorders of varying severity and overweight or obesity. The deletions in these 14 new patients measured from 2.6 to 8.8 Mb. Although the major role of HDAC4 has been demonstrated, the phenotypic involvement of several other genes in the deleted regions is unknown. We further refined the genotype–phenotype correlation for the 2q37 deletion. To do this, we examined the smallest overlapping deleted region for candidate genes for skeletal malformations (facial dysmorphism and brachydactyly), overweight, behavioural problems and seizures, using clinical data, a review of the literature, and the Manteia database. Among the candidate genes identified, we focus on the roles of PRLH, PER2, TWIST2, CAPN10, KIF1A, FARP2, D2HGDH and PDCD1.


Pediatric and Developmental Pathology | 1999

Investigation of nonimmune hydrops fetalis: multidisciplinary studies are necessary for diagnosis--review of 94 cases.

Aude Lallemand; Martine Doco-Fenzy; Dominique Gaillard

ABSTRACT This review of 94 cases of nonimmune hydrops fetalis (NIHF) over a 10-year period was undertaken to evaluate the frequency of this pathology among fetal and infant deaths and to determine the most common likely etiologies in a northeastern region of France. NIHF represented 6% of the fetal deaths examined in our laboratory. The combination of findings from morphologic examination of the placenta and fetus with the results of microbiological and cytogenetic investigations (conventional cytogenetic study, fluorescent in situ hybridization [FISH], or DNA ploidy image analysis) led to an etiologic diagnosis for NIHF in two-thirds of the cases and suggested a diagnosis in an additional 23% of cases. The most common causes of NIHF were chromosome abnormalities (33%), infections (16%), and cardiac pathology (13.8%). The detection of a cause for NIHF is important for genetic counseling and management of subsequent pregnancies. Our experience suggests that a diagnosis is possible in a large majority of NIHF when obstetricians and pathologists carefully coordinate the management of prenatal and postnatal investigations and when new techniques, such as molecular biology and DNA quantification, are used.


American Journal of Medical Genetics Part A | 2009

Genotype-phenotype correlation in four 15q24 deleted patients identified by array-CGH.

Joris Andrieux; Christèle Dubourg; Marlène Rio; Tania Attié-Bitach; Elsa Delaby; Michèle Mathieu; Hubert Journel; Henri Copin; Eléonore Blondeel; Martine Doco-Fenzy; Emilie Landais; Bruno Delobel; Sylvie Odent; Sylvie Manouvrier-Hanu; Muriel Holder-Espinasse

Microdeletion 15q24 is an emerging syndrome recently described, mainly due to increased use of array‐CGH. Clinical features associate mild to moderate developmental delay, typical facial characteristics (high forehead and frontal hairline, broad eyebrows, downslanting palpebral features, long philtrum), hands (particularly proximal implanted thumbs) and genital anomalies (micropenis, hypospadias). We report here on four de novo cases having 2.5–6.1 Mb deletions involving 15q24: one 15q23q24.2 (Patient 1) and three 15q24.1q24.2 deletions (Patients 2–4). We correlate phenotype to genotype according to molecular boundaries of these deletions. Since bilateral iris coloboma and severe ano‐rectal malformation were only present in Patient 1, we could link these anomalies to haploinsufficiency of 15q23 genes. Neither hypospadias nor micropenis were present in Patient 3 bearing the smallest deletion, therefore we could define 500 kb 15q24.1 region linked to these anomalies.


European Journal of Human Genetics | 2014

Early-onset obesity and paternal 2pter deletion encompassing the ACP1 , TMEM18 , and MYT1L genes

Martine Doco-Fenzy; Camille Leroy; Anouck Schneider; Florence Petit; Marie-Ange Delrue; Joris Andrieux; Laurence Perrin-Sabourin; Emilie Landais; Azzedine Aboura; Jacques Puechberty; Manon Girard; Magali Tournaire; Elodie Sanchez; Caroline Rooryck; Agnès Ameil; Michel Goossens; Philippe Jonveaux; Geneviève Lefort; Laurence Taine; Dorothée Cailley; Dominique Gaillard; Bruno Leheup; Pierre Sarda; David Geneviève

Obesity is a common but highly, clinically, and genetically heterogeneous disease. Deletion of the terminal region of the short arm of chromosome 2 is rare and has been reported in about 13 patients in the literature often associated with a Prader–Willi-like phenotype. We report on five unrelated patients with 2p25 deletion of paternal origin presenting with early-onset obesity, hyperphagia, intellectual deficiency, and behavioural difficulties. Among these patients, three had de novo pure 2pter deletions, one presented with a paternal derivative der(2)t(2;15)(p25.3;q26) with deletion in the 2pter region and the last patient presented with an interstitial 2p25 deletion. The size of the deletions was characterized by SNP array or array-CGH and was confirmed by fluorescence in situ hybridization (FISH) studies. Four patients shared a 2p25.3 deletion with a minimal critical region estimated at 1.97 Mb and encompassing seven genes, namely SH3HYL1, ACP1, TMEMI8, SNTG2, TPO, PXDN, and MYT1L genes. The fifth patient had a smaller interstitial deletion encompassing the TPO, PXDN, and MYT1L genes. Paternal origin of the deletion was determined by genotyping using microsatellite markers. Analysis of the genes encompassed in the deleted region led us to speculate that the ACP1, TMEM18, and/or MYT1L genes might be involved in early-onset obesity. In addition, intellectual deficiency and behavioural troubles can be explained by the heterozygous loss of the SNTG2 and MYT1L genes. Finally, we discuss the parent-of-origin of the deletion.


Biological Psychiatry | 2016

The Number of Genomic Copies at the 16p11.2 Locus Modulates Language, Verbal Memory, and Inhibition

Loyse Hippolyte; Anne M. Maillard; Borja Rodríguez-Herreros; Aurélie Pain; Sandra Martin-Brevet; Carina Ferrari; Philippe Conus; Aurélien Macé; Nouchine Hadjikhani; Andres Metspalu; Anu Reigo; Anneli Kolk; Katrin Männik; Mandy Barker; Bertrand Isidor; Cédric Le Caignec; Cyril Mignot; Laurence Schneider; Laurent Mottron; Boris Keren; Albert David; Martine Doco-Fenzy; Marion Gerard; Raphael Bernier; Robin P. Goin-Kochel; Ellen Hanson; Lee Anne Green Snyder; Franck Ramus; Jacques S. Beckmann; Bogdan Draganski

BACKGROUND Deletions and duplications of the 16p11.2 BP4-BP5 locus are prevalent copy number variations (CNVs), highly associated with autism spectrum disorder and schizophrenia. Beyond language and global cognition, neuropsychological assessments of these two CNVs have not yet been reported. METHODS This study investigates the relationship between the number of genomic copies at the 16p11.2 locus and cognitive domains assessed in 62 deletion carriers, 44 duplication carriers, and 71 intrafamilial control subjects. RESULTS IQ is decreased in deletion and duplication carriers, but we demonstrate contrasting cognitive profiles in these reciprocal CNVs. Deletion carriers present with severe impairments of phonology and of inhibition skills beyond what is expected for their IQ level. In contrast, for verbal memory and phonology, the data may suggest that duplication carriers outperform intrafamilial control subjects with the same IQ level. This finding is reminiscent of special isolated skills as well as contrasting language performance observed in autism spectrum disorder. Some domains, such as visuospatial and working memory, are unaffected by the 16p11.2 locus beyond the effect of decreased IQ. Neuroimaging analyses reveal that measures of inhibition covary with neuroanatomic structures previously identified as sensitive to 16p11.2 CNVs. CONCLUSIONS The simultaneous study of reciprocal CNVs suggests that the 16p11.2 genomic locus modulates specific cognitive skills according to the number of genomic copies. Further research is warranted to replicate these findings and elucidate the molecular mechanisms modulating these cognitive performances.


European Journal of Human Genetics | 2015

Further delineation of the KAT6B molecular and phenotypic spectrum

Tamsin Gannon; Rahat Perveen; Helene Schlecht; Simon Ramsden; Beverley Anderson; Bronwyn Kerr; Ruth Day; Siddharth Banka; Mohnish Suri; Siren Berland; Michael T. Gabbett; Alan Ma; Stan Lyonnet; Valérie Cormier-Daire; Ruestem Yilmaz; Guntram Borck; Dagmar Wieczorek; Britt-Marie Anderlid; Sarah F. Smithson; Julie Vogt; Heather Moore-Barton; Pelin Ozlem Simsek-Kiper; Isabelle Maystadt; A Destree; Jessica Bucher; Brad Angle; Shehla Mohammed; Emma Wakeling; Sue Price; Amihood Singer

KAT6B sequence variants have been identified previously in both patients with the Say-Barber-Biesecker type of blepharophimosis mental retardation syndromes (SBBS) and in the more severe genitopatellar syndrome (GPS). We report on the findings in a previously unreported group of 57 individuals with suggestive features of SBBS or GPS. Likely causative variants have been identified in 34/57 patients and were commonly located in the terminal exons of KAT6B. Of those where parental samples could be tested, all occurred de novo. Thirty out of thirty-four had truncating variants, one had a missense variant and the remaining three had the same synonymous change predicted to affect splicing. Variants in GPS tended to occur more proximally to those in SBBS patients, and genotype/phenotype analysis demonstrated significant clinical overlap between SBBS and GPS. The de novo synonymous change seen in three patients with features of SBBS occurred more proximally in exon 16. Statistical analysis of clinical features demonstrated that KAT6B variant-positive patients were more likely to display hypotonia, feeding difficulties, long thumbs/great toes and dental, thyroid and patella abnormalities than KAT6B variant-negative patients. The few reported patients with KAT6B haploinsufficiency had a much milder phenotype, though with some features overlapping those of SBBS. We report the findings in a previously unreported patient with a deletion of the KAT6B gene to further delineate the haploinsufficiency phenotype. The molecular mechanisms giving rise to the SBBS and GPS phenotypes are discussed.


European Journal of Medical Genetics | 2012

Bipolar affective disorder and early dementia onset in a male patient with SHANK3 deletion

Ksenija Vucurovic; Emilie Landais; Cécile Delahaigue; Julien Eutrope; Anouck Schneider; Camille Leroy; Hamza Kabbaj; Jacques Motte; Dominique Gaillard; Anne-Catherine Rolland; Martine Doco-Fenzy

The SHANK3 protein is a scaffold protein known to stabilize metabotropic glutamate receptor mGluR5 in the post-synaptic membrane of neurons. It is associated with genetic vulnerability in autism and schizophrenia. Here we report the case of an 18 year-old male patient who displayed psychiatric features of bipolar affective disorder associated with early setting of dementia. This mental status is related to sporadic occurrence of SHANK3 gene complex multiple deletions. A low beta amyloid protein rate (479 mg/L) found in cerebrospinal fluid suggests a possible link between SHANK3 deletion syndrome-associated regression and dementia of Alzheimerss type. In addition, we propose an overview of the phenotype related to SHANK3 deletion.


European Journal of Human Genetics | 2008

Molecular cytogenetic characterization of terminal 14q32 deletions in two children with an abnormal phenotype and corpus callosum hypoplasia

Anouck Schneider; Brigitte Benzacken; Agnès Guichet; Alain Verloes; Dominique Bonneau; Nathalie Collot; Florence Dastot-Le-Moal; Michel Goossens; Laurence Taine; Emilie Landais; Dominique Gaillard; Martine Doco-Fenzy

Among previously reported cases of 14q terminal deletions, only 11 have dealt with pure terminal deletion of 14q (14q3–14qter) and the break points were mapped by fluorescent in situ hybridisation (FISH) or genotyping in only four of them. Thanks to a collaborative study on behalf of the ‘Association des Cytogeneticiens de langue Française’(ACLF), we report two patients with terminal deletion of the long arm of chromosome 14, del(14)(q32.2) and del(14)(q32.32), diagnosed by subtelomere screening. In the two cases, a thick nuchal skinfold was detected by early ultrasound with normal prenatal karyotype. Their postnatal phenotype included large forehead, narrow palpebral fissures, epicanthic folds, upturned tip of the nose, narrow mouth and thin upper lip, microretrognathia, prominent earlobes, hypotonia, delayed psychomotor development and hypoplastic corpus callosum. By physical mapping using FISH, the size of the deletions was measured for patients 1 and 2: 6.55±1.05 and 4.67±0.10 Mb, respectively. The paternal origin of the deleted chromosome 14 was established by genotyping of microsatellites for patient 1 and the phenotype of terminal del(14)(q32) was compared to maternal uniparental disomy 14.

Collaboration


Dive into the Martine Doco-Fenzy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques Motte

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar

Alice Goldenberg

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurence Taine

Université Bordeaux Segalen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valérie Cormier-Daire

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Pierre Mauran

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge