Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martine Moulin is active.

Publication


Featured researches published by Martine Moulin.


Nature Structural & Molecular Biology | 2011

Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings

Natacha Rochel; Fabrice Ciesielski; Julien Godet; Edelmiro Moman; Manfred Roessle; Carole Peluso-Iltis; Martine Moulin; Michael Haertlein; Phil Callow; Yves Mély; Dmitri I. Svergun; Dino Moras

Nuclear hormone receptors (NHRs) control numerous physiological processes through the regulation of gene expression. The present study provides a structural basis for understanding the role of DNA in the spatial organization of NHR heterodimers in complexes with coactivators such as Med1 and SRC-1. We have used SAXS, SANS and FRET to determine the solution structures of three heterodimer NHR complexes (RXR–RAR, PPAR–RXR and RXR–VDR) coupled with the NHR interacting domains of coactivators bound to their cognate direct repeat elements. The structures show an extended asymmetric shape and point to the important role played by the hinge domains in establishing and maintaining the integrity of the structures. The results reveal two additional features: the conserved position of the ligand-binding domains at the 5′ ends of the target DNAs and the binding of only one coactivator molecule per heterodimer, to RXRs partner.


Journal of the American Chemical Society | 2008

Coincidence of dynamical transitions in a soluble protein and its hydration water: direct measurements by neutron scattering and MD simulations.

Kathleen Wood; Andreas Frölich; Alessandro Paciaroni; Martine Moulin; Michael Härtlein; Giuseppe Zaccai; Douglas J. Tobias; Martin Weik

The coupling between protein dynamics and hydration-water dynamics was assessed by perdeuteration, temperature-dependent neutron scattering, and molecular dynamics simulations. Mean square displacements of water and protein motions both show a broad transition at 220 K and are thus coupled. In particular, the protein dynamical transition appears to be driven by the onset of hydration-water translational motion.


Nature Communications | 2015

Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins

Giorgio Schirò; Yann Fichou; François-Xavier Gallat; Kathleen Wood; Frank Gabel; Martine Moulin; Michael Härtlein; Matthias Heyden; Jacques-Philippe Colletier; A. Orecchini; Alessandro Paciaroni; Joachim Wuttke; Douglas J. Tobias; Martin Weik

Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity.


Journal of Biological Chemistry | 2009

Double Superhelix Model of High Density Lipoprotein

Zhiping Wu; Valentin Gogonea; Xavier Lee; Matthew A. Wagner; Xinmin Li; Ying Huang; Arundhati Undurti; Roland P. May; Michael Haertlein; Martine Moulin; Irina Gutsche; Giuseppe Zaccai; Joseph A. DiDonato; Stanley L. Hazen

High density lipoprotein (HDL), the carrier of so-called “good” cholesterol, serves as the major athero-protective lipoprotein and has emerged as a key therapeutic target for cardiovascular disease. We applied small angle neutron scattering (SANS) with contrast variation and selective isotopic deuteration to the study of nascent HDL to obtain the low resolution structure in solution of the overall time-averaged conformation of apolipoprotein AI (apoA-I) versus the lipid (acyl chain) core of the particle. Remarkably, apoA-I is observed to possess an open helical shape that wraps around a central ellipsoidal lipid phase. Using the low resolution SANS shapes of the protein and lipid core as scaffolding, an all-atom computational model for the protein and lipid components of nascent HDL was developed by integrating complementary structural data from hydrogen/deuterium exchange mass spectrometry and previously published constraints from multiple biophysical techniques. Both SANS data and the new computational model, the double superhelix model, suggest an unexpected structural arrangement of protein and lipids of nascent HDL, an anti-parallel double superhelix wrapped around an ellipsoidal lipid phase. The protein and lipid organization in nascent HDL envisages a potential generalized mechanism for lipoprotein biogenesis and remodeling, biological processes critical to sterol and lipid transport, organismal energy metabolism, and innate immunity.


Biophysical Journal | 2011

Bilayer-Mediated Clustering and Functional Interaction of MscL Channels

Stephan L. Grage; Asbed M. Keleshian; Tamta Turdzeladze; Andrew R. Battle; Wee C. Tay; Roland P. May; Stephen A. Holt; Sonia Antoranz Contera; Michael Haertlein; Martine Moulin; Prithwish Pal; Paul R. Rohde; V. Trevor Forsyth; Anthony Watts; Kerwyn Casey Huang; Anne S. Ulrich; Boris Martinac

Mechanosensitive channels allow bacteria to respond to osmotic stress by opening a nanometer-sized pore in the cellular membrane. Although the underlying mechanism has been thoroughly studied on the basis of individual channels, the behavior of channel ensembles has yet to be elucidated. This work reveals that mechanosensitive channels of large conductance (MscL) exhibit a tendency to spatially cluster, and demonstrates the functional relevance of clustering. We evaluated the spatial distribution of channels in a lipid bilayer using patch-clamp electrophysiology, fluorescence and atomic force microscopy, and neutron scattering and reflection techniques, coupled with mathematical modeling of the mechanics of a membrane crowded with proteins. The results indicate that MscL forms clusters under a wide range of conditions. MscL is closely packed within each cluster but is still active and mechanosensitive. However, the channel activity is modulated by the presence of neighboring proteins, indicating membrane-mediated protein-protein interactions. Collectively, these results suggest that MscL self-assembly into channel clusters plays an osmoregulatory functional role in the membrane.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Hydration water mobility is enhanced around tau amyloid fibers

Yann Fichou; Giorgio Schirò; François-Xavier Gallat; Cedric Laguri; Martine Moulin; Jérôme Combet; Michaela Zamponi; Michael Härtlein; Catherine Picart; Estelle Mossou; Hugues Lortat-Jacob; Jacques-Philippe Colletier; Douglas J. Tobias; Martin Weik

Significance Protein aggregation into amyloid fibers and oligomers is observed in a variety of neurodegenerative diseases. The fibers formed by the intrinsically disordered human protein tau, for instance, are one of the hallmarks of Alzheimer disease. In this work, we report on the dynamic behavior of tau hydration water, which we found to be more mobile in tau fibers than in nonaggregated tau. This increase in mobility could promote fiber formation through an increase in hydration water entropy. That hydration water is more mobile around the pathological form of tau corroborates that methodologies sensitive to the diffusion of water, such as diffusion magnetic resonance imaging, could be used to diagnose Alzheimer patients in an early stage of the disease. The paired helical filaments (PHF) formed by the intrinsically disordered human protein tau are one of the pathological hallmarks of Alzheimer disease. PHF are fibers of amyloid nature that are composed of a rigid core and an unstructured fuzzy coat. The mechanisms of fiber formation, in particular the role that hydration water might play, remain poorly understood. We combined protein deuteration, neutron scattering, and all-atom molecular dynamics simulations to study the dynamics of hydration water at the surface of fibers formed by the full-length human protein htau40. In comparison with monomeric tau, hydration water on the surface of tau fibers is more mobile, as evidenced by an increased fraction of translationally diffusing water molecules, a higher diffusion coefficient, and increased mean-squared displacements in neutron scattering experiments. Fibers formed by the hexapeptide 306VQIVYK311 were taken as a model for the tau fiber core and studied by molecular dynamics simulations, revealing that hydration water dynamics around the core domain is significantly reduced after fiber formation. Thus, an increase in water dynamics around the fuzzy coat is proposed to be at the origin of the experimentally observed increase in hydration water dynamics around the entire tau fiber. The observed increase in hydration water dynamics is suggested to promote fiber formation through entropic effects. Detection of the enhanced hydration water mobility around tau fibers is conjectured to potentially contribute to the early diagnosis of Alzheimer patients by diffusion MRI.


Biophysical Journal | 2008

In Vivo Measurement of Internal and Global Macromolecular Motions in Escherichia coli

Marion Jasnin; Martine Moulin; Michael Haertlein; Giuseppe Zaccai; Moeava Tehei

We present direct quasielastic neutron scattering measurements, in vivo, of macromolecular dynamics in Escherichia coli. The experiments were performed on a wide range of timescales to cover the large panel of internal and self-diffusion motions. Three major internal processes were extracted at physiological temperature: a fast picosecond process that corresponded to restricted jump diffusion motions and two slower processes that resulted from reorientational motions occurring in approximately 40 ps and 90 ps, respectively. The analysis of the fast process revealed that the cellular environment leads to an appreciable increase in internal molecular flexibility and diffusive motion rates compared with those evaluated in fully hydrated powders. The result showed that the amount of cell water plays a decisive role in internal molecular dynamics. Macromolecular interactions and confinement, however, attenuate slightly the lubricating effect of water, as revealed by the decrease of the in vivo parameters compared with those measured in solution. The study demonstrated that standard sample preparations do not mimic accurately the physiological environment and suggested that intracellular complexity participates in functional dynamics necessary for biological activity. Furthermore, the method allowed the extraction of the self-diffusion of E. coli macromolecules, which presented similar parameters as those extracted for hemoglobin in red blood cells.


Biophysical Journal | 2012

Dynamical coupling of intrinsically disordered proteins and their hydration water: comparison with folded soluble and membrane proteins.

François-Xavier Gallat; Arthur Laganowsky; Kathleen Wood; Frank Gabel; L. van Eijck; Joachim Wuttke; Martine Moulin; M. Härtlein; David Eisenberg; Jacques-Philippe Colletier; Giuseppe Zaccai; Martin Weik

Hydration water is vital for various macromolecular biological activities, such as specific ligand recognition, enzyme activity, response to receptor binding, and energy transduction. Without hydration water, proteins would not fold correctly and would lack the conformational flexibility that animates their three-dimensional structures. Motions in globular, soluble proteins are thought to be governed to a certain extent by hydration-water dynamics, yet it is not known whether this relationship holds true for other protein classes in general and whether, in turn, the structural nature of a protein also influences water motions. Here, we provide insight into the coupling between hydration-water dynamics and atomic motions in intrinsically disordered proteins (IDP), a largely unexplored class of proteins that, in contrast to folded proteins, lack a well-defined three-dimensional structure. We investigated the human IDP tau, which is involved in the pathogenic processes accompanying Alzheimer disease. Combining neutron scattering and protein perdeuteration, we found similar atomic mean-square displacements over a large temperature range for the tau protein and its hydration water, indicating intimate coupling between them. This is in contrast to the behavior of folded proteins of similar molecular weight, such as the globular, soluble maltose-binding protein and the membrane protein bacteriorhodopsin, which display moderate to weak coupling, respectively. The extracted mean square displacements also reveal a greater motional flexibility of IDP compared with globular, folded proteins and more restricted water motions on the IDP surface. The results provide evidence that protein and hydration-water motions mutually affect and shape each other, and that there is a gradient of coupling across different protein classes that may play a functional role in macromolecular activity in a cellular context.


European Physical Journal E | 2013

Small angle neutron scattering for the study of solubilised membrane proteins.

Cécile Breyton; Frank Gabel; Mathilde Lethier; Ali Flayhan; Grégory Durand; Jean-Michel Jault; Céline Juillan-Binard; Lionel Imbert; Martine Moulin; Stéphanie Ravaud; Michael Härtlein; Christine Ebel

Small angle neutron scattering (SANS) is a powerful technique for investigating association states and conformational changes of biological macromolecules in solution. SANS is of particular interest for the study of the multi-component systems, as membrane protein complexes, for which in vitro characterisation and structure determination are often difficult. This article details the important physical properties of surfactants in view of small angle neutron scattering studies and the interest to deuterate membrane proteins for contrast variation studies. We present strategies for the production of deuterated membrane proteins and methods for quality control. We then review some studies on membrane proteins, and focus on the strategies to overcome the intrinsic difficulty to eliminate homogeneously the detergent or surfactant signal for solubilised membrane proteins, or that of lipids for membrane proteins inserted in liposomes.Graphical abstract


Journal of Molecular Biology | 2008

X-ray and neutron small-angle scattering analysis of the complex formed by the Met receptor and the Listeria monocytogenes invasion protein InlB.

Hartmut H. Niemann; Maxim V. Petoukhov; Michael Härtlein; Martine Moulin; Ermanno Gherardi; Peter A. Timmins; Dirk W. Heinz; Dmitri I. Svergun

The Listeria monocytogenes surface protein InlB binds to the extracellular domain of the human receptor tyrosine kinase Met, the product of the c-met proto-oncogene. InlB binding activates the Met receptor, leading to uptake of Listeria into normally nonphagocytic host cells. The N-terminal half of InlB (InlB(321)) is sufficient for Met binding and activation. The complex between this Met-binding domain of InlB and various constructs of the Met ectodomain was characterized by size exclusion chromatography and dynamic light scattering, and structural models were built using small-angle X-ray scattering and small-angle neutron scattering. Although most receptor tyrosine kinase ligands induce receptor dimerization, InlB(321) consistently binds the Met ectodomain with a 1:1 stoichiometry. A construct comprising the Sema and PSI domains of Met, although sufficient to bind the physiological Met ligand hepatocyte growth factor/scatter factor, does not form a complex with InlB(321) in solution, highlighting the importance of Met Ig domains for InlB binding. Small-angle X-ray scattering and small-angle neutron scattering measurements of ligand and receptor, both free and in complex, reveal an elongated shape for the receptor. The four Ig domains form a bent, rather than a fully extended, conformation, and InlB(321) binds to Sema and the first Ig domain of Met, in agreement with the recent crystal structure of a smaller Met fragment in complex with InlB(321). These results call into question whether receptor dimerization is the basic underlying event in InlB(321)-mediated Met activation and demonstrate differences in the mechanisms by which the physiological ligand hepatocyte growth factor/scatter factor and InlB(321) bind and activate the Met receptor.

Collaboration


Dive into the Martine Moulin's collaboration.

Top Co-Authors

Avatar

Michael Haertlein

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Michael Härtlein

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Zaccai

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew P. Blakeley

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Gabel

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge