Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martine Nguyen-Distèche is active.

Publication


Featured researches published by Martine Nguyen-Distèche.


Molecular Microbiology | 2005

Maturation of the Escherichia coli divisome occurs in two steps

Mirjam E. G. Aarsman; André Piette; Claudine Fraipont; Thessa M. Vinkenvleugel; Martine Nguyen-Distèche; Tanneke den Blaauwen

Cell division proteins FtsZ (FtsA, ZipA, ZapA), FtsE/X, FtsK, FtsQ, FtsL/B, FtsW, PBP3, FtsN and AmiC localize at mid cell in Escherichia coli in an interdependent order as listed. To investigate whether this reflects a time dependent maturation of the divisome, the average cell age at which FtsZ, FtsQ, FtsW, PBP3 and FtsN arrive at their destination was determined by immuno‐ and GFP‐fluorescence microscopy of steady state grown cells at a variety of growth rates. Consistently, a time delay of 14–21 min, depending on the growth rate, between Z‐ring formation and the mid cell recruitment of proteins down stream of FtsK was found. We suggest a two‐step model for bacterial division in which the Z‐ring is involved in the switch from cylindrical to polar peptidoglycan synthesis, whereas the much later localizing cell division proteins are responsible for the modification of the envelope shape into that of two new poles.


The EMBO Journal | 2011

Identification of FtsW as a transporter of lipid‐linked cell wall precursors across the membrane

Tamimount Mohammadi; Vincent van Dam; Robert Sijbrandi; Thierry Vernet; André Zapun; Ahmed Bouhss; Marlies Diepeveen-de Bruin; Martine Nguyen-Distèche; Ben de Kruijff; Eefjan Breukink

Bacterial cell growth necessitates synthesis of peptidoglycan. Assembly of this major constituent of the bacterial cell wall is a multistep process starting in the cytoplasm and ending in the exterior cell surface. The intracellular part of the pathway results in the production of the membrane‐anchored cell wall precursor, Lipid II. After synthesis this lipid intermediate is translocated across the cell membrane. The translocation (flipping) step of Lipid II was demonstrated to require a specific protein (flippase). Here, we show that the integral membrane protein FtsW, an essential protein of the bacterial division machinery, is a transporter of the lipid‐linked peptidoglycan precursors across the cytoplasmic membrane. Using Escherichia coli membrane vesicles we found that transport of Lipid II requires the presence of FtsW, and purified FtsW induced the transbilayer movement of Lipid II in model membranes. This study provides the first biochemical evidence for the involvement of an essential protein in the transport of lipid‐linked cell wall precursors across biogenic membranes.


Fems Microbiology Reviews | 2008

Morphogenesis of rod-shaped sacculi

Tanneke den Blaauwen; Miguel A. de Pedro; Martine Nguyen-Distèche; Juan A. Ayala

For growth and division of rod-shaped bacteria, the cylindrical part of the sacculus has to be elongated and two new cell poles have to be synthesized. The elongation is performed by a protein complex, the elongase that inserts disaccharidepentapeptide units at a limited number of discrete sites while using the cytoskeletal MreB helix as a tracking device. Upon initiation of cell division by positioning of the cytoskeletal Z-ring at mid cell, a switch from dispersed to concentrated local peptidoglycan-synthesis occurs. From this point on, peptidoglycan synthesis is for a large part redirected from elongating activity to synthesis of new cell poles by the divisome. The divisome might be envisioned as an extended elongase because apart from its basic peptidoglycan synthesizing activity, specific functions have to be added. These are conversion from a cylinder to a sphere, invagination of the outer membrane and addition of hydrolases that allow separation of the daughter cells. The elongase and the divisome are dynamic hyperstructures that probably share part of their proteins. Although this multifunctionality and flexibility form a barrier to the functional elucidation of its individual subunits, it helps the cells to survive a variety of emergency situations and to proliferate securely.


Molecular Microbiology | 1999

The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan‐polymerizing penicillin‐binding protein 1b of Escherichia coli

Mohammed Terrak; Tushar K. Ghosh; Jean van Heijenoort; Jozef Van Beeumen; Maxime Lampilas; Jozsef Aszodi; Juan A. Ayala; Jean-Marie Ghuysen; Martine Nguyen-Distèche

The penicillin‐binding protein (PBP) 1b of Escherichia coli catalyses the assembly of lipid‐transported N‐acetyl glucosaminyl‐β‐1,4‐N‐acetylmuramoyl‐l‐alanyl‐γ‐d‐glutamyl‐(l)‐meso‐diaminopimelyl‐(l)‐d‐alanyl‐d‐alanine disaccharide pentapeptide units into polymeric peptidoglycan. These units are phosphodiester linked, at C1 of muramic acid, to a C55 undecaprenyl carrier. PBP1b has been purified in the form of His tag (M46‐N844) PBP1bγ. This derivative provides the host cell in which it is produced with a functional wall peptidoglycan. His tag (M46‐N844) PBP1bγ possesses an amino‐terminal hydrophobic segment, which serves as transmembrane spanner of the native PBP. This segment is linked, via an ≅ 100‐amino‐acid insert, to a D198‐G435 glycosyl transferase module that possesses the five motifs characteristic of the PBPs of class A. In in vitro assays, the glycosyl transferase of the PBP catalyses the synthesis of linear glycan chains from the lipid carrier with an efficiency of ≅ 39 000 M−1 s−1. Glu‐233, of motif 1, is central to the catalysed reaction. It is proposed that the Glu‐233 γ‐COOH donates its proton to the oxygen atom of the scissile phosphoester bond of the lipid carrier, leading to the formation of an oxocarbonium cation, which then undergoes attack by the 4‐OH group of a nucleophile N‐acetylglucosamine. Asp‐234 of motif 1 or Glu‐290 of motif 3 could be involved in the stabilization of the oxocarbonium cation and the activation of the 4‐OH group of the N‐acetylglucosamine. In turn, Tyr‐310 of motif 4 is an important component of the amino acid sequence‐folding information. The glycosyl transferase module of PBP1b, the lysozymes and the lytic transglycosylase Slt70 have much the same catalytic machinery. They might be members of the same superfamily. The glycosyl transferase module is linked, via a short junction site, to the amino end of a Q447‐N844 acyl transferase module, which possesses the catalytic centre‐defining motifs of the penicilloyl serine transferases superfamily. In in vitro assays with the lipid precursor and in the presence of penicillin at concentrations sufficient to derivatize the active‐site serine 510 of the acyl transferase, the rate of glycan chain synthesis is unmodified, showing that the functioning of the glycosyl transferase is acyl transferase independent. In the absence of penicillin, the products of the Ser‐510‐assisted double‐proton shuttle are glycan strands substituted by cross‐linked tetrapeptide–pentapeptide and tetrapeptide–tetrapeptide dimers and uncross‐linked pentapeptide and tetrapeptide monomers. The acyl transferase of the PBP also catalyses aminolysis and hydrolysis of properly structured thiolesters, but it lacks activity on d‐alanyl‐d‐alanine‐terminated peptides. This substrate specificity suggests that carbonyl donor activity requires the attachment of the pentapeptides to the glycan chains made by the glycosyl transferase, and it implies that one and the same PBP molecule catalyses transglycosylation and peptide cross‐linking in a sequential manner. Attempts to produce truncated forms of the PBP lead to the conclusion that the multimodular polypeptide chain behaves as an integrated folding entity during PBP1b biogenesis.


Molecular Microbiology | 2006

Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli.

Ute Bertsche; Thomas Kast; Benoît Wolf; Claudine Fraipont; Mirjam E. G. Aarsman; Kai Kannenberg; Moritz von Rechenberg; Martine Nguyen-Distèche; Tanneke den Blaauwen; Joachim-Volker Höltje; Waldemar Vollmer

The murein (peptidoglycan) sacculus is an essential polymer embedded in the bacterial envelope. The Escherichia coli class B penicillin‐binding protein (PBP) 3 is a murein transpeptidase and essential for cell division. In an affinity chromatography experiment, the bifunctional transglycosylase‐transpeptidase murein synthase PBP1B was retained by PBP3‐sepharose when a membrane fraction of E. coli was applied. The direct protein–protein interaction between purified PBP3 and PBP1B was characterized in vitro by surface plasmon resonance. The interaction was confirmed in vivo employing two different methods: by a bacterial two‐hybrid system, and by cross‐linking/co‐immunoprecipitation. In the bacterial two‐hybrid system, a truncated PBP3 comprising the N‐terminal 56 amino acids interacted with PBP1B. Both synthases could be cross‐linked in vivo in wild‐type cells and in cells lacking FtsW or FtsN. PBP1B localized diffusely and in foci at the septation site and also at the side wall. Statistical analysis of the immunofluorescence signals revealed that the localization of PBP1B at the septation site depended on the physical presence of PBP3, but not on the activity of PBP3. These studies have demonstrated, for the first time, a direct interaction between a class B PBP (PBP3) and a class A PBP (PBP1B) in vitro and in vivo, indicating that different murein synthases might act in concert to enlarge the murein sacculus during cell division.


Molecular Microbiology | 1997

Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole.

David S. Weiss; Kit Pogliano; Michael J. Carson; Luz-Maria Guzman; Claudine Fraipont; Martine Nguyen-Distèche; Richard Losick; Jon Beckwith

FtsI, also known as penicillin‐binding protein 3, is a transpeptidase required for the synthesis of peptidoglycan in the division septum of the bacterium, Escherichia coli. FtsI has been estimated to be present at about 100 molecules per cell, well below the detection limit of immunoelectron microscopy. Here, we confirm the low abundance of FtsI and use immunofluorescence microscopy, a highly sensitive technique, to show that FtsI is localized to the division site during the later stages of cell growth. FtsI was also sometimes observed at the cell pole; polar localization was not anticipated and its significance is not known. We conclude (i) that immunofluorescence microscopy can be used to localize proteins whose abundance is as low as approximately 100 molecules per cell; and (ii) that spatial and temporal regulation of FtsI activity in septum formation is achieved, at least in part, by timed localization of the protein to the division site.


Journal of Biological Chemistry | 2007

The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli

Patrick Müller; Carolin Ewers; Ute Bertsche; Maria Anstett; Tanja Kallis; Eefjan Breukink; Claudine Fraipont; Mohammed Terrak; Martine Nguyen-Distèche; Waldemar Vollmer

Bacterial cell division requires the coordinated action of cell division proteins and murein (peptidoglycan) synthases. Interactions involving the essential cell division protein FtsN and murein synthases were studied by affinity chromatography with membrane fraction. The murein synthases PBP1A, PBP1B, and PBP3 had an affinity to immobilized FtsN. FtsN and PBP3, but not PBP1A, showed an affinity to immobilized PBP1B. The direct interaction between FtsN and PBP1B was confirmed by pulldown experiments and surface plasmon resonance. The interaction was also detected by bacterial two-hybrid analysis. FtsN and PBP1B could be cross-linked in intact cells of the wild type and in cells depleted of PBP3 or FtsW. FtsN stimulated the in vitro murein synthesis activities of PBP1B. Thus, FtsN could have a role in controlling or modulating the activity of PBP1B during cell division in Escherichia coli.


Molecular Microbiology | 2012

Cooperativity of peptidoglycan synthases active in bacterial cell elongation.

Manuel Banzhaf; Bart van den Berg van Saparoea; Mohammed Terrak; Claudine Fraipont; Alexander J. F. Egan; Jules Philippe; André Zapun; Eefjan Breukink; Martine Nguyen-Distèche; Tanneke den Blaauwen; Waldemar Vollmer

Growth of the bacterial cell wall peptidoglycan sacculus requires the co‐ordinated activities of peptidoglycan synthases, hydrolases and cell morphogenesis proteins, but the details of these interactions are largely unknown. We now show that the Escherichia coli peptidoglycan glycosyltrasferase‐transpeptidase PBP1A interacts with the cell elongation‐specific transpeptidase PBP2 in vitro and in the cell. Cells lacking PBP1A are thinner and initiate cell division later in the cell cycle. PBP1A localizes mainly to the cylindrical wall of the cell, supporting its role in cell elongation. Our in vitro peptidoglycan synthesis assays provide novel insights into the cooperativity of peptidoglycan synthases with different activities. PBP2 stimulates the glycosyltransferase activity of PBP1A, and PBP1A and PBP2 cooperate to attach newly synthesized peptidoglycan to sacculi. PBP2 has peptidoglycan transpeptidase activity in the presence of active PBP1A. Our data also provide a possible explanation for the depletion of lipid II precursors in penicillin‐treated cells.


Microbiology | 2011

The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli

Claudine Fraipont; Svetlana Alexeeva; Benoît Wolf; René van der Ploeg; Marie Schloesser; Tanneke den Blaauwen; Martine Nguyen-Distèche

During the cell cycle of rod-shaped bacteria, two morphogenetic processes can be discriminated: length growth of the cylindrical part of the cell and cell division by formation of two new cell poles. The morphogenetic protein complex responsible for the septation during cell division (the divisome) includes class A and class B penicillin-binding proteins (PBPs). In Escherichia coli, the class B PBP3 is specific for septal peptidoglycan synthesis. It requires the putative lipid II flippase FtsW for its localization at the division site and is necessary for the midcell localization of the class A PBP1B. In this work we show direct interactions between FtsW and PBP3 in vivo and in vitro by FRET (Förster resonance energy transfer) and co-immunoprecipitation experiments. These proteins are able to form a discrete complex independently of the other cell-division proteins. The K2-V42 peptide of PBP3 containing the membrane-spanning sequence is a structural determinant sufficient for interaction with FtsW and for PBP3 dimerization. By using a two-hybrid assay, the class A PBP1B was shown to interact with FtsW. However, it could not be detected in the immunoprecipitated FtsW-PBP3 complex. The periplasmic loop 9/10 of FtsW appeared to be involved in the interaction with both PBP1B and PBP3. It might play an important role in the positioning of these proteins within the divisome.


Molecular Microbiology | 2010

Septal and lateral wall localization of PBP5, the major D,D‐carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment

Lakshmi-Prasad Potluri; Aneta Karczmarek; Jolanda Verheul; André Piette; Jean-Marc Wilkin; Nadine Werth; Manuel Banzhaf; Waldemar Vollmer; Kevin D. Young; Martine Nguyen-Distèche; Tanneke den Blaauwen

The distribution of PBP5, the major D,D‐carboxypeptidase in Escherichia coli, was mapped by immunolabelling and by visualization of GFP fusion proteins in wild‐type cells and in mutants lacking one or more D,D‐carboxypeptidases. In addition to being scattered around the lateral envelope, PBP5 was also concentrated at nascent division sites prior to visible constriction. Inhibiting PBP2 activity (which eliminates wall elongation) shifted PBP5 to midcell, whereas inhibiting PBP3 (which aborts divisome invagination) led to the creation of PBP5 rings at positions of preseptal wall formation, implying that PBP5 localizes to areas of ongoing peptidoglycan synthesis. A PBP5(S44G) active site mutant was more evenly dispersed, indicating that localization required enzyme activity and the availability of pentapeptide substrates. Both the membrane bound and soluble forms of PBP5 converted pentapeptides to tetrapeptides in vitro and in vivo, and the enzymes accepted the same range of substrates, including sacculi, Lipid II, muropeptides and artificial substrates. However, only the membrane‐bound form localized to the developing septum and restored wild‐type rod morphology to shape defective mutants, suggesting that the two events are related. The results indicate that PBP5 localization to sites of ongoing peptidoglycan synthesis is substrate dependent and requires membrane attachment.

Collaboration


Dive into the Martine Nguyen-Distèche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge