Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martine Stihle is active.

Publication


Featured researches published by Martine Stihle.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Unique carbohydrate–carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose

Claudia Ferrara; Sandra Grau; Christiane Jäger; Peter Sondermann; Peter Brünker; Inja Waldhauer; Michael Hennig; Armin Ruf; Arne C. Rufer; Martine Stihle; Pablo Umana; Jörg Benz

Antibody-mediated cellular cytotoxicity (ADCC), a key immune effector mechanism, relies on the binding of antigen–antibody complexes to Fcγ receptors expressed on immune cells. Antibodies lacking core fucosylation show a large increase in affinity for FcγRIIIa leading to an improved receptor-mediated effector function. Although afucosylated IgGs exist naturally, a next generation of recombinant therapeutic, glycoenginereed antibodies is currently being developed to exploit this finding. In this study, the crystal structures of a glycosylated Fcγ receptor complexed with either afucosylated or fucosylated Fc were determined allowing a detailed, molecular understanding of the regulatory role of Fc-oligosaccharide core fucosylation in improving ADCC. The structures reveal a unique type of interface consisting of carbohydrate–carbohydrate interactions between glycans of the receptor and the afucosylated Fc. In contrast, in the complex structure with fucosylated Fc, these contacts are weakened or nonexistent, explaining the decreased affinity for the receptor. These findings allow us to understand the higher efficacy of therapeutic antibodies lacking the core fucose and also suggest a unique mechanism by which the immune system can regulate antibody-mediated effector functions.


Angewandte Chemie | 2011

Systematic Investigation of Halogen Bonding in Protein-Ligand Interactions.

Leo A. Hardegger; Bernd Kuhn; Beat Spinnler; Lilli Anselm; Robert Ecabert; Martine Stihle; Bernard Gsell; Ralf Thoma; Joachim Diez; Jörg Benz; Jean-Marc Plancher; Guido Hartmann; David W. Banner; Wolfgang Haap; François Diederich

Halogen bonding (XB) refers to the noncovalent interaction of general structure DX···A between halogen-bearing compounds (DX: XB donor, where X=Cl, Br, I) and nucleophiles (A: XB acceptor). Since the first observation in cocrystal structures of 1,4-dioxane and Br2 by Hassel and Hvoslef in 1954, XB has been widely used in crystal engineering and solid-state supramolecular chemistry. The nature of the interaction and the underlying electronic prerequisite, the s hole in the XB donor, have been the subject of extensive theoretical studies. 7–9] Most recently, the attractive nature of XB between 1-iodoperfluoroalkanes and various donors has also been demonstrated and quantified in solution studies. Novel inhibitors of human Cathepsin L (hCatL) were discovered which bind covalently to the side chain of the catalytic Cys25 residue in the S1 pocket under formation of thioimidates, which are stabilized by the oxyanion hole of the protease. These ligands form hydrogen bonds to the backbone NH and C=O groups of Gly68 and Asp162, respectively, and fill the S2 and S3 pockets, thereby interacting with the enzyme through multiple lipophilic contacts. During the course of this research, we obtained an indication of an XB contact between a 4-chlorophenyl moiety of a ligand, whose binding affinity was enhanced by a factor of 13 compared to the unsubstituted phenyl derivative, and the backbone C=O group of Gly61 in the S3 pocket (Figure 1). This finding stimulated the prepa-


Nature | 2004

Insight Into Steroid Scaffold Formation from the Structure of Human Oxidosqualene Cyclase

Ralf Thoma; Tanja Schulz-Gasch; Brigitte D'Arcy; Jörg Benz; Johannes Aebi; Henrietta Dehmlow; Michael Hennig; Martine Stihle; Armin Ruf

In higher organisms the formation of the steroid scaffold is catalysed exclusively by the membrane-bound oxidosqualene cyclase (OSC; lanosterol synthase). In a highly selective cyclization reaction OSC forms lanosterol with seven chiral centres starting from the linear substrate 2,3-oxidosqualene. Valuable data on the mechanism of the complex cyclization cascade have been collected during the past 50 years using suicide inhibitors, mutagenesis studies and homology modelling. Nevertheless it is still not fully understood how the enzyme catalyses the reaction. Because of the decisive role of OSC in cholesterol biosynthesis it represents a target for the discovery of novel anticholesteraemic drugs that could complement the widely used statins. Here we present two crystal structures of the human membrane protein OSC: the target protein with an inhibitor that showed cholesterol lowering in vivo opens the way for the structure-based design of new OSC inhibitors. The complex with the reaction product lanosterol gives a clear picture of the way in which the enzyme achieves product specificity in this highly exothermic cyclization reaction.


Structure | 2003

Structural Basis of Proline-Specific Exopeptidase Activity as Observed in Human Dipeptidyl Peptidase-IV

Ralf Thoma; Bernd Michael Löffler; Martine Stihle; Walter Huber; Armin Ruf; Michael Hennig

Inhibition of dipeptidyl peptidase IV (DPP-IV), the main glucagon-like peptide 1 (GLP1)-degrading enzyme, has been proposed for the treatment of type II diabetes. We expressed and purified the ectodomain of human DPP-IV in Pichia pastoris and determined the X-ray structure at 2.1 A resolution. The enzyme consists of two domains, the catalytic domain, with an alpha/beta hydrolase fold, and a beta propeller domain with an 8-fold repeat of a four-strand beta sheet motif. The beta propeller domain contributes two important functions to the molecule that have not been reported for such structures, an extra beta sheet motif that forms part of the dimerization interface and an additional short helix with a double Glu sequence motif. The Glu motif provides recognition and a binding site for the N terminus of the substrates, as revealed by the complex structure with diprotin A, a substrate with low turnover that is trapped in the tetrahedral intermediate of the reaction in the crystal.


ChemMedChem | 2011

Halogen Bonding at the Active Sites of Human Cathepsin L and MEK1 Kinase: Efficient Interactions in Different Environments

Leo A. Hardegger; Bernd Kuhn; Beat Spinnler; Lilli Anselm; Robert Ecabert; Martine Stihle; Bernard Gsell; Ralf Thoma; Joachim Diez; Jörg Benz; Jean-Marc Plancher; Guido Hartmann; Yoshiaki Isshiki; Kenji Morikami; Nobuo Shimma; Wolfgang Haap; David W. Banner; François Diederich

In two series of small‐molecule ligands, one inhibiting human cathepsin L (hcatL) and the other MEK1 kinase, biological affinities were found to strongly increase when an aryl ring of the inhibitors is substituted with the larger halogens Cl, Br, and I, but to decrease upon F substitution. X‐ray co‐crystal structure analyses revealed that the higher halides engage in halogen bonding (XB) with a backbone CO in the S3 pocket of hcatL and in a back pocket of MEK1. While the S3 pocket is located at the surface of the enzyme, which provides a polar environment, the back pocket in MEK1 is deeply buried in the protein and is of pronounced apolar character. This study analyzes environmental effects on XB in protein–ligand complexes. It is hypothesized that energetic gains by XB are predominantly not due to water replacements but originate from direct interactions between the XB donor (CarylX) and the XB acceptor (CO) in the correct geometry. New X‐ray co‐crystal structures in the same crystal form (space group P212121) were obtained for aryl chloride, bromide, and iodide ligands bound to hcatL. These high‐resolution structures reveal that the backbone CO group of Gly61 in most hcatL co‐crystal structures maintains water solvation while engaging in XB. An arylCF3‐substituted ligand of hcatL with an unexpectedly high affinity was found to adopt the same binding geometry as the aryl halides, with the CF3 group pointing to the CO group of Gly61 in the S3 pocket. In this case, a repulsive F2CF⋅⋅⋅OC contact apparently is energetically overcompensated by other favorable protein–ligand contacts established by the CF3 group.


Journal of Molecular Biology | 2010

Molecular switch in the glucocorticoid receptor: active and passive antagonist conformations

Guillaume A. Schoch; Brigitte D'Arcy; Martine Stihle; Dominique Burger; Dominik Bär; Jörg Benz; Ralf Thoma; Armin Ruf

Mifepristone is known to induce mixed passive antagonist, active antagonist, and agonist effects via the glucocorticoid receptor (GR) pathway. Part of the antagonist effects of mifepristone are due to the repression of gene transcription mediated by the nuclear receptor corepressor (NCoR). Here, we report the crystal structure of a ternary complex of the GR ligand binding domain (GR-LBD) with mifepristone and a receptor-interacting motif of NCoR. The structures of three different conformations of the GR-LBD mifepristone complex show in the oxosteroid hormone receptor family how helix 12 modulates LBD corepressor and coactivator binding. Differences in NCoR binding and in helix 12 conformation reveal how the 11beta substituent in mifepristone triggers the helix 12 molecular switch to reshape the coactivator site into the corepressor site. Two observed conformations exemplify the active antagonist state of GR with NCoR bound. In another conformation, helix 12 completely blocks the coregulator binding site and explains the passive antagonistic effect of mifepristone on GR.


Acta Crystallographica Section D-biological Crystallography | 2003

The advantages of using a modified microbatch method for rapid screening of protein crystallization conditions

Allan D'Arcy; Aengus Mac Sweeney; Martine Stihle; Alexander Haber

In this study, characterization and optimization of a modified microbatch crystallization technique has been attempted in order to provide a rapid screening method. Using this method for screening has certain advantages over standard vapour-diffusion methods: no sealing of drops is required, no reservoir solutions are needed and the experiments can easily be performed over a range of temperatures.


Bioorganic & Medicinal Chemistry Letters | 2008

Tyramine fragment binding to BACE-1

Andreas Kuglstatter; Martin Stahl; Jens-Uwe Peters; Walter Huber; Martine Stihle; Daniel Schlatter; Jörg Benz; Armin Ruf; Doris Roth; Thilo Enderle; Michael Hennig

Fragment screening revealed that tyramine binds to the active site of the Alzheimers disease drug target BACE-1. Hit expansion by selection of compounds from the Roche compound library identified tyramine derivatives with improved binding affinities as monitored by surface plasmon resonance. X-ray structures show that the amine of the tyramine fragment hydrogen-bonds to the catalytic water molecule. Structure-guided ligand design led to the synthesis of further low molecular weight compounds that are starting points for chemical leads.


Journal of Molecular Biology | 2010

Structure of the Human Fatty Acid Synthase KS–MAT Didomain as a Framework for Inhibitor Design

Günter Pappenberger; Jörg Benz; Bernard Gsell; Michael Hennig; Armin Ruf; Martine Stihle; Ralf Thoma; Markus G. Rudolph

The human fatty acid synthase (FAS) is a key enzyme in the metabolism of fatty acids and a target for antineoplastic and antiobesity drug development. Due to its size and flexibility, structural studies of mammalian FAS have been limited to individual domains or intermediate-resolution studies of the complete porcine FAS. We describe the high-resolution crystal structure of a large part of human FAS that encompasses the tandem domain of beta-ketoacyl synthase (KS) connected by a linker domain to the malonyltransferase (MAT) domain. Hinge regions that allow for substantial flexibility of the subdomains are defined. The KS domain forms the canonical dimer, and its substrate-binding site geometry differs markedly from that of bacterial homologues but is similar to that of the porcine orthologue. The didomain structure reveals a possible way to generate a small and compact KS domain by omitting a large part of the linker and MAT domains, which could greatly aid in rapid screening of KS inhibitors. In the crystal, the MAT domain exhibits two closed conformations that differ significantly by rigid-body plasticity. This flexibility may be important for catalysis and extends the conformational space previously known for type I FAS and 6-deoxyerythronolide B synthase.


Acta Crystallographica Section D-biological Crystallography | 1999

Crystal engineering: a case study using the 24 kDa fragment of the DNA gyrase B subunit from Escherichia coli.

Allan D'Arcy; Martine Stihle; Dirk Kostrewa; Glenn E. Dale

Site-directed mutagenesis was used to determine the efficacy of changing surface residues to improve crystal quality. Nine mutants of the 24 kDa fragment of the Escherichia coli DNA gyrase B subunit were produced, changing residues on the proteins surface. The mutations changed either the charge or the polarity of the wild-type amino acid. It was found that single amino-acid changes on the surface could have a dramatic effect on the crystallization properties of the protein and generally resulted in an improvement in the number of crystal-screen hits as well as an improvement in crystal quality. It is concluded that crystal engineering is a valuable tool for protein crystallography.

Collaboration


Dive into the Martine Stihle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Hennig

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge