Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martine Trevisan is active.

Publication


Featured researches published by Martine Trevisan.


Plant Journal | 2012

Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling

Patricia Hornitschek; Markus V. Kohnen; Séverine Lorrain; Jacques Rougemont; Karin Ljung; Irene López-Vidriero; José Manuel Franco-Zorrilla; Roberto Solano; Martine Trevisan; Sylvain Pradervand; Ioannis Xenarios; Christian Fankhauser

Plant growth is strongly influenced by the presence of neighbors that compete for light resources. In response to vegetational shading shade-intolerant plants such as Arabidopsis display a suite of developmental responses known as the shade-avoidance syndrome (SAS). The phytochrome B (phyB) photoreceptor is the major light sensor to mediate this adaptive response. Control of the SAS occurs in part with phyB, which controls protein abundance of phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) directly. The shade-avoidance response also requires rapid biosynthesis of auxin and its transport to promote elongation growth. The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes. Moreover our study suggests that PIF4 and PIF5 regulate elongation growth by controlling directly the expression of genes that code for auxin biosynthesis and auxin signaling components.


Journal of Biological Chemistry | 2006

Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals.

Totte Niittylä; Sylviane Comparot-Moss; Wei-Ling Lue; Gaëlle Messerli; Martine Trevisan; Michael D. J. Seymour; John A. Gatehouse; Dorthe Villadsen; Steven M. Smith; Jychian Chen; Samuel C. Zeeman; Alison M. Smith

We report that protein phosphorylation is involved in the control of starch metabolism in Arabidopsis leaves at night. sex4 (starch excess 4) mutants, which have strongly reduced rates of starch metabolism, lack a protein predicted to be a dual specificity protein phosphatase. We have shown that this protein is chloroplastic and can bind to glucans and have presented evidence that it acts to regulate the initial steps of starch degradation at the granule surface. Remarkably, the most closely related protein to SEX4 outside the plant kingdom is laforin, a glucan-binding protein phosphatase required for the metabolism of the mammalian storage carbohydrate glycogen and implicated in a severe form of epilepsy (Lafora disease) in humans.


Journal of Biological Chemistry | 2006

Evidence for Distinct Mechanisms of Starch Granule Breakdown in Plants

Thierry Delatte; Martin Umhang; Martine Trevisan; Simona Eicke; David Thorneycroft; Steven M. Smith; Samuel C. Zeeman

The aim of this work was to understand the initial steps of starch breakdown inside chloroplasts. In the non-living endosperm of germinating cereal grains, starch breakdown is initiated by α-amylase secreted from surrounding cells. However, loss of α-amylase from Arabidopsis does not prevent chloroplastic starch breakdown (Yu, T.-S., Zeeman, S. C., Thorneycroft, D., Fulton, D. C., Dunstan, H., Lue, W.-L., Hegemann, B., Tung, S.-Y., Umemoto, T., Chapple, A., Tsai, D.-L., Wang, S.-M, Smith, A. M., Chen, J., and Smith, S. M. (2005) J. Biol. Chem. 280, 9773-9779), implying that other enzymes must attack the starch granule. Here, we present evidence that the debranching enzyme isoamylase 3 (ISA3) acts at the surface of the starch granule. Atisa3 mutants have more leaf starch and a slower rate of starch breakdown than wild-type plants. The amylopectin of Atisa3 contains many very short branches and ISA3-GFP localizes to granule-like structures inside chloroplasts. We suggest that ISA3 removes short branches from the granule surface. To understand how some starch is still degraded in Atisa3 mutants we eliminated a second debranching enzyme, limit dextrinase (pullulanase-type). Atlda mutants are indistinguishable from the wild type. However, the Atisa3/Atlda double mutant has a more severe starch-excess phenotype and a slower rate of starch breakdown than Atisa3 single mutants. The double mutant accumulates soluble branched oligosaccharides (limit dextrins) that are undetectable in the wild-type and the single mutants. Together these results suggest that glucan debranching occurs primarily at the granule surface via ISA3, but in its absence soluble branched glucans are debranched in the stroma via limit dextrinase. Consistent with this model, chloroplastic α-amylase AtAMY3, which could release soluble branched glucans, is induced in Atisa3 and in the Atisa3/Atlda double mutant.


Plant Physiology | 2007

Rapid classification of phenotypic mutants of Arabidopsis via metabolite fingerprinting.

Gaëlle Messerli; Vahid Partovi Nia; Martine Trevisan; Anna Kolbe; Nicolas Schauer; Peter Geigenberger; Jychian Chen; A. C. Davison; Alisdair R. Fernie; Samuel C. Zeeman

We evaluated the application of gas chromatography-mass spectrometry metabolic fingerprinting to classify forward genetic mutants with similar phenotypes. Mutations affecting distinct metabolic or signaling pathways can result in common phenotypic traits that are used to identify mutants in genetic screens. Measurement of a broad range of metabolites provides information about the underlying processes affected in such mutants. Metabolite profiles of Arabidopsis (Arabidopsis thaliana) mutants defective in starch metabolism and uncharacterized mutants displaying a starch-excess phenotype were compared. Each genotype displayed a unique fingerprint. Statistical methods grouped the mutants robustly into distinct classes. Determining the genes mutated in three uncharacterized mutants confirmed that those clustering with known mutants were genuinely defective in starch metabolism. A mutant that clustered away from the known mutants was defective in the circadian clock and had a pleiotropic starch-excess phenotype. These results indicate that metabolic fingerprinting is a powerful tool that can rapidly classify forward genetic mutants and streamline the process of gene discovery.


Plant Journal | 2009

Phytochrome interacting factors 4 and 5 redundantly limit seedling de‐etiolation in continuous far‐red light

Séverine Lorrain; Martine Trevisan; Sylvain Pradervand; Christian Fankhauser

Phytochromes are red/far-red photosensors that regulate numerous developmental programs in plants. Among them, phytochrome A (phyA) is essential to enable seedling de-etiolation under continuous far-red (FR) light, a condition that mimics the environment under a dense canopy. The ecological relevance of this response is demonstrated by the high mortality rate of phyA mutant plants that germinate in deep vegetational shade. phyA signaling involves direct interaction of the photoreceptor with phytochrome-interacting factors PIF1 and PIF3, members of the bHLH transcription factor family. Here we investigated the involvement of PIF4 and PIF5 in phyA signaling, and found that they redundantly control de-etiolation in FR light. The pif4 pif5 double mutant is hypersensitive to low fluence rates of FR light. This phenotype is dependent on FR light perception by phyA, but does not rely on alterations in the phyA level. Our microarray analysis shows that PIF4 and PIF5 are part of an inhibitory mechanism that represses the expression of some light-responsive genes in the dark, and that they are also needed for full expression of several growth-related genes in the light. Unlike PIF1 and PIF3, PIF4 and PIF5 are not degraded in response to FR light, indicating that they are light-regulated by a different mechanism. Our genetic analysis suggests that this is achieved through sequestration of these PIFs by the closely related bHLH transcription factor HFR1 (long hypocotyl in FR light).


The Plant Cell | 2013

D6PK AGCVIII Kinases Are Required for Auxin Transport and Phototropic Hypocotyl Bending in Arabidopsis

Björn C. Willige; Siv Ahlers; Melina Zourelidou; Inês C. R. Barbosa; Emilie Demarsy; Martine Trevisan; Philip A. Davis; M. Rob G. Roelfsema; Roger P. Hangarter; Christian Fankhauser; Claus Schwechheimer

This work demonstrates that D6PK AGC kinases and PIN auxin transporters are required for phototropic hypocotyl bending. The findings suggest that D6PK-mediated phosphorylation of PIN transporters promotes auxin transport in the hypocotyl to ensure proper phototropic hypocotyl bending. Phototropic hypocotyl bending in response to blue light excitation is an important adaptive process that helps plants to optimize their exposure to light. In Arabidopsis thaliana, phototropic hypocotyl bending is initiated by the blue light receptors and protein kinases phototropin1 (phot1) and phot2. Phototropic responses also require auxin transport and were shown to be partially compromised in mutants of the PIN-FORMED (PIN) auxin efflux facilitators. We previously described the D6 PROTEIN KINASE (D6PK) subfamily of AGCVIII kinases, which we proposed to directly regulate PIN-mediated auxin transport. Here, we show that phototropic hypocotyl bending is strongly dependent on the activity of D6PKs and the PIN proteins PIN3, PIN4, and PIN7. While early blue light and phot-dependent signaling events are not affected by the loss of D6PKs, we detect a gradual loss of PIN3 phosphorylation in d6pk mutants of increasing complexity that is most severe in the d6pk d6pkl1 d6pkl2 d6pkl3 quadruple mutant. This is accompanied by a reduction of basipetal auxin transport in the hypocotyls of d6pk as well as in pin mutants. Based on our data, we propose that D6PK-dependent PIN regulation promotes auxin transport and that auxin transport in the hypocotyl is a prerequisite for phot1-dependent hypocotyl bending.


The Plant Cell | 2012

Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis

Chitose Kami; Micha Hersch; Martine Trevisan; Thierry Genoud; Andreas Hiltbrunner; Sven Bergmann; Christian Fankhauser

This article shows that the phytochrome A photoreceptor promotes reorientation of the hypocotyl toward blue light (phototropism) by regulating the expression of nuclear genes. It also shows that phytochrome A nuclear signaling events still operate in a mutant where phytochrome A does not significantly accumulate in the nucleus. Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis

Micha Hersch; Séverine Lorrain; Mieke de Wit; Martine Trevisan; Karin Ljung; Sven Bergmann; Christian Fankhauser

Significance Plants sense foliar shade and neighbors who may become competitors for light. Shade-sensitive species elongate in response to both situations to enhance access to unfiltered sunlight, which is known as the shade avoidance response (SAR). During neighbor detection, plants have access to plenty of light (energy resources), whereas in true shade, light resources are scarce. Our analysis of the molecular mechanisms underlying SAR under these contrasting conditions shows that light intensity balances the production and sensitivity of the growth hormone auxin. In foliar shade, the production of auxin is reduced, whereas the downstream sensitivity to the auxin signal is enhanced. This hints at a resource-aware signaling where the strength of the hormonal signal is tuned to the available resources. Plants such as Arabidopsis thaliana respond to foliar shade and neighbors who may become competitors for light resources by elongation growth to secure access to unfiltered sunlight. Challenges faced during this shade avoidance response (SAR) are different under a light-absorbing canopy and during neighbor detection where light remains abundant. In both situations, elongation growth depends on auxin and transcription factors of the phytochrome interacting factor (PIF) class. Using a computational modeling approach to study the SAR regulatory network, we identify and experimentally validate a previously unidentified role for long hypocotyl in far red 1, a negative regulator of the PIFs. Moreover, we find that during neighbor detection, growth is promoted primarily by the production of auxin. In contrast, in true shade, the system operates with less auxin but with an increased sensitivity to the hormonal signal. Our data suggest that this latter signal is less robust, which may reflect a cost-to-robustness tradeoff, a system trait long recognized by engineers and forming the basis of information theory.


Current Biology | 2017

UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis

Scott Hayes; Ashutosh Sharma; Donald P. Fraser; Martine Trevisan; C. Kester Cragg-Barber; Eleni Tavridou; Christian Fankhauser; Gareth I. Jenkins; Keara A. Franklin

Summary Small increases in ambient temperature can elicit striking effects on plant architecture, collectively termed thermomorphogenesis [1]. In Arabidopsis thaliana, these include marked stem elongation and leaf elevation, responses that have been predicted to enhance leaf cooling [2, 3, 4, 5]. Thermomorphogenesis requires increased auxin biosynthesis, mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) [6, 7, 8], and enhanced stability of the auxin co-receptor TIR1, involving HEAT SHOCK PROTEIN 90 (HSP90) [9]. High-temperature-mediated hypocotyl elongation additionally involves localized changes in auxin metabolism, mediated by the indole-3-acetic acid (IAA)-amido synthetase Gretchen Hagen 3 (GH3).17 [10]. Here we show that ultraviolet-B light (UV-B) perceived by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8) [11] strongly attenuates thermomorphogenesis via multiple mechanisms inhibiting PIF4 activity. Suppression of thermomorphogenesis involves UVR8 and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1)-mediated repression of PIF4 transcript accumulation, reducing PIF4 abundance. UV-B also stabilizes the bHLH protein LONG HYPOCOTYL IN FAR RED (HFR1), which can bind to and inhibit PIF4 function. Collectively, our results demonstrate complex crosstalk between UV-B and high-temperature signaling. As plants grown in sunlight would most likely experience concomitant elevations in UV-B and ambient temperature, elucidating how these pathways are integrated is of key importance to the understanding of plant development in natural environments.


The Plant Cell | 2016

Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth

Markus V. Kohnen; Emanuel Schmid-Siegert; Martine Trevisan; Laure Allenbach Petrolati; Fabien Sénéchal; Patricia Müller-Moulé; Julin N. Maloof; Ioannis Xenarios; Christian Fankhauser

Organ-specific shade-regulated transcriptome analysis identifies genes whose differential expression may underlie organ-specific elongation and reveals a growth promotion gene expression signature. In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana. PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs.

Collaboration


Dive into the Martine Trevisan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ioannis Xenarios

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge