Martine van der Ploeg
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martine van der Ploeg.
Environmental Science & Technology | 2016
Esperanza Huerta Lwanga; Hennie Gertsen; Harm Gooren; Piet Peters; Tamás Salánki; Martine van der Ploeg; Ellen Besseling; Albert A. Koelmans; Violette Geissen
Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, <150 μm) in litter at concentrations of 7, 28, 45, and 60% dry weight, percentages that, after bioturbation, translate to 0.2 to 1.2% in bulk soil. Mortality after 60 days was higher at 28, 45, and 60% of microplastics in the litter than at 7% w/w and in the control (0%). Growth rate was significantly reduced at 28, 45, and 60% w/w microplastics, compared to the 7% and control treatments. Due to the digestion of ingested organic matter, microplastic was concentrated in cast, especially at the lowest dose (i.e., 7% in litter) because that dose had the highest proportion of digestible organic matter. Whereas 50 percent of the microplastics had a size of <50 μm in the original litter, 90 percent of the microplastics in the casts was <50 μm in all treatments, which suggests size-selective egestion by the earthworms. These concentration-transport and size-selection mechanisms may have important implications for fate and risk of microplastic in terrestrial ecosystems.
Reviews of Geophysics | 2017
Kris Van Looy; Johan Bouma; Michael Herbst; John Koestel; Budiman Minasny; Umakant Mishra; Carsten Montzka; Attila Nemes; Yakov A. Pachepsky; José Padarian; Marcel G. Schaap; Brigitta Tóth; Anne Verhoef; Jan Vanderborght; Martine van der Ploeg; Lutz Weihermüller; Steffen Zacharias; Yonggen Zhang; Harry Vereecken
Soil, through its various functions, plays a vital role in the Earths ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. In this paper, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscaling techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration and organic carbon content, root density and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.
Biologia | 2009
Gerrit H. de Rooij; Martine van der Ploeg; H. P. A. Gooren; Gerben Bakker; C.W. Hoogendam; Cindy Huiskes; H. Kruidhof; Luuk K. Koopal
In recent years, a polymer tensiometer (POT) was developed and tested to directly measure matric potentials in dry soils. By extending the measurement range to wilting point (a 20-fold increase compared to conventional, water-filled tensiometers), a myriad of previously unapproachable research questions are now open to experimental exploration. Furthermore, the instrument may well allow the development of more water-efficient irrigation strategies by recording water potential rather than soil water content. The principle of the sensor is to fill it with a polymer solution instead of water, thereby building up osmotic pressure inside the sensor. A high-quality ceramic allows the exchange of water with the soil while retaining the polymer. The ceramic has pores sufficiently small to remain saturated even under very negative matric potentials. Installing the sensor in an unsaturated soil causes the high pressure of the polymer solution to drop as the water potentials in the soil and in the POT equilibrate. As long as the pressure inside the polymer chamber remains sufficiently large to prevent cavitation, the sensor will function properly. If the osmotic potential in the polymer chamber can produce a pressure of approximately 2.0 MPa when the sensor is placed in water, proper readings down to wilting point are secured. Various tests in disturbed soil, including an experiment with root water uptake, demonstrate the operation and performance of the new polymer tensiometer and illustrate how processes such as root water uptake can be studied in more detail than before. The paper discusses the available data and explores the long term perspectives offered by the instrument.
Scientific Reports | 2017
Esperanza Huerta Lwanga; Jorge Mendoza Vega; Victor Ku Quej; Jesus de los Angeles Chi; Lucero Sánchez-del Cid; Cesar Chi; Griselda Escalona Segura; Henny Gertsen; Tamás Salánki; Martine van der Ploeg; Albert A. Koelmans; Violette Geissen
Although plastic pollution happens globally, the micro- (<5 mm) and macroplastic (5–150 mm) transfer of plastic to terrestrial species relevant to human consumption has not been examined. We provide first-time evidence for micro- and macroplastic transfer from soil to chickens in traditional Mayan home gardens in Southeast Mexico where waste mismanagement is common. We assessed micro- and macroplastic in soil, earthworm casts, chicken feces, crops and gizzards (used for human consumption). Microplastic concentrations increased from soil (0.87 ± 1.9 particles g−1), to earthworm casts (14.8 ± 28.8 particles g−1), to chicken feces (129.8 ± 82.3 particles g−1). Chicken gizzards contained 10.2 ± 13.8 microplastic particles, while no microplastic was found in crops. An average of 45.82 ± 42.6 macroplastic particles were found per gizzard and 11 ± 15.3 macroplastic particles per crop, with 1–10 mm particles being significantly more abundant per gizzard (31.8 ± 27.27 particles) compared to the crop (1 ± 2.2 particles). The data show that micro- and macroplastic are capable of entering terrestrial food webs.
Water Resources Research | 2017
Victor F. Bense; Barret L. Kurylyk; Jonathan van Daal; Martine van der Ploeg; Sean K. Carey
Temperature can be used to trace groundwater flows due to thermal disturbances of subsurface advection. Prior hydrogeological studies that have used temperature-depth profiles to estimate vertical groundwater fluxes have either ignored the influence of climate change by employing steady-state analytical solutions or applied transient techniques to study temperature-depth profiles recorded at only a single point in time. Transient analyses of a single profile are predicated on the accurate determination of an unknown profile at some time in the past to form the initial condition. In this study, we use both analytical solutions and a numerical model to demonstrate that boreholes with temperature-depth profiles recorded at multiple times can be analyzed to either overcome the uncertainty associated with estimating unknown initial conditions or to form an additional check for the profile fitting. We further illustrate that the common approach of assuming a linear initial temperature-depth profile can result in significant errors for groundwater flux estimates. Profiles obtained from a borehole in the Veluwe area, Netherlands in both 1978 and 2016 are analysed for an illustrative example. Since many temperature-depth profiles were collected in the late 1970s and 1980s, these previously profiled boreholes represent a significant and underexploited opportunity to obtain repeat measurements that can be used for similar analyses at other sites around the world.
Hydrological Processes | 2017
Marieke Oosterwoud; Martine van der Ploeg; Sake van der Schaaf; Sjoerd E. A. T. M. van der Zee
In hydrological terms raised bogs can be approximated by simple models as in the acrotelm-catotelm concept. However, raised bogs are often characterized by a pronounced surface topography, causing large changes in connectivity of contributing areas onthe bog. In this study, daily regression of measured discharges versus catchment areas is used to quantify the importance of surface topography on catchment connectivity within a raised bog. The resulting coefficient of determination shows the strengthof the relationship between the discharge and catchment area over time under different hydrological conditions. Monitoring of discharge, water table, transmissivity, and basic weather data on a raised bog (1.9 km2) in eastern central Estonia took place from May 2008 to June 2010. Contributing areas, calculated based on the outlets discharge volume (VQ) divided by the net precipitation volume (VPnet), of the outlet containing the central pool-ridge system varied between 1 mes10− 3 m2 and 0.7 km2, suggesting significant differences in connectivity between hydrological events. Correlation between discharge and theoretical catchment size was high (R2>0.75) when the water table was closeto the surface (less than 5 cm below peat surface), and consequently transmissivities were also high (up to 1030 m2 d− 1), which lead to connectivity of local storage elements, such as pools and hollows. However, a water table below this threshold resulted in large parts of the catchment being disconnected. The importance of water table depths on catchment connectivity suggests the need to reconsider the hydrological concept of raised bogs; to incorporate these shallow flow components and better understand residence time and consequently transport of solutes, such as DOC, from patterned peatlands.
Landscape Ecology | 2018
Ricardo Teixeira da Silva; Luuk Fleskens; Hedwig van Delden; Martine van der Ploeg
ContextTraditionally soils have not received much attention in urban planning. For this, tools are needed that can both be understood both by soil scientists and urban planners.PurposeThe purpose of this paper is to enhance the role of soil knowledge in urban planning practice, through the following objectives: (1) identifying the role soil plays in recent urban plans; (2) analysing the ecosystem services and indicators used in soil science in an urban context; and (3) inferring the main challenges and opportunities to integrate soil into urban planning.MethodsSeven urban plans and reports of world cities that include sustainability goals were analysed using text-mining and qualitative analysis, with a critical view on the inclusion of soil-related concepts. Secondly, the contribution of soil science to urban planning was assessed with an overview of case studies in the past decade that focus on soil-related ecosystem services in urban context.ResultsThe results show an overall weak attention to soil and soil-related ecosystem services in the implementation and monitoring phases of urban plans. The majority of soil science case studies uses a haphazard approach to measure ecosystem service indicators which may not capture the ecosystem services appropriately and hence lack relevance for urban planning.ConclusionsEven though the most urban plans assessed recognize soil as a key resource, most of them fail to integrate indicators to measure or monitor soil-related functions. There is a need to develop soil-related ecosystem services that can be easily integrated and understood by other fields.
Hydrology and Earth System Sciences | 2017
C.D.U. Carranza; Martine van der Ploeg; P. J. J. F. Torfs
Abstract. Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depthintegrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.
International Soil and Water Conservation Research | 2015
Violette Geissen; Hans G.J. Mol; Erwin Klumpp; Günter Umlauf; Marti Nadal; Martine van der Ploeg; Sjoerd E.A.T.M. van de Zee; Coen J. Ritsema
Quaternary Research | 2010
Sylvi Haldorsen; Michael Heim; Barrie Dale; Jon Y. Landvik; Martine van der Ploeg; Anton Leijnse; Otto Salvigsen; Jon Ove Hagen; David Banks